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PREFACE.

This Book has been written as a companion volume to my
Treatise on the Differential Calculus, and in its construction

I have endeavoured to carry out the same general plan on

which that hook was composed. I have, accordingly, studied

simplicity so far as was consistent with rigour of demonstra-

tion, and have tried to make the suhject as attractive to

the heginner as the nature of the Calculus would permit.

I have, as far as possible, confined my attention to the

general principles of Integration, and have endeavoured to

arrange the successive portions of the subject in the order

best suited for the Student.

I have paid considerable attention to the geometrical ap-

plications ofthe Calculus, and have introduced a number of the

leading fundamental properties of the more important curves

and surfaces, so far as they are coimected with the Integral

Calculus. This has led me to give many remarkable results,

such as Steiner's general theorems on the connexion of pedals

and roulettes, Amsler's planimeter, Kempe's theorem,

Landen's theorems on the rectification of the hyperbola,

Genocchi's theorem on the rectification of the Cartesian oval,

and others which have not been usually included in text-

books on the Integral Calculus.

A Chapter has been devoted to the discussion of Integrals

of Inertia. For the methods adopted, and a great part of the
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details in this Chapter, I am indehted to the kindness of the

late Professor Townsend. My friend, Professor Crofton,

has laid me under very deep obligations by contributing

a Chapter on Mean Value and Probability. I am glad to

be able to lay this Chapter before the Student, as an in-

troduction to this branch of the subject by a Mathematician

whose original and admirable Papers, in the Philosophical

Transactions, 1868-69, and elsewhere, have so largely contri-

buted to the recent extension of this important application

of the Integral Calculus.

In this Edition I have introduced a brief account of the

application of the Integral Calculus to Spherical Harmonics,

and also a short Chapter on Fourier's Theorem, which I hope

will be found useful additions to the Book.

Trinity College,

February, 1888.
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INTEGRAL CALCULIIS.

CHAPTER I.

ELEMENTARY FORMS OF INTEGRATION.

I. Integration.—The Integral Calculus is the inverse of

the Differential. In the more simple case to which this

treatise is principally limited, the object of the Integral

Calculus is to find a function of a single variable when its

differential is Jtnoimi.

Let the differential be represented hj F{x)dx, then the

function whose differential is F(x) dm is called its integral, and
is represented by the notation

F{sci) dx.

Thus, since in the notation of the Differential Calculus we
have

df{x)=f'{x)dx,

the integral oif'{x) dx is denoted hjf(x) ; i.e.

|/(«) dx =f{x).

Moreover, as f{x) and /(«) + C (where C is any arbitrary

quantity that does not vary with x) have the same differen-

tial, it follows, that to find the general form of the integral of

fix) dx it is necessary to add an arbitrary constant to f{x) ;

hence we obtain, as the general expression for the integral

in question,

{f'{x)dx=f{x) + C. (i)

M



2 Elementary Forms of Integration:

In the subsequent integrals the constant Cwill he omitted,

as it can always he supplied when necessary. In the appli-

cations of the Integral Calculus the value of the constant is

determined in each case hy the data of the problem, as will be

more fully explained subsequently.

The process of finding the primitive function or the inte-

gral of any given differential is called integration.

The expression F{x) dx under the sign of integration is

called an element of the integral ; it is also, in the limit, the

increment of the primitive function when x is changed into

X + dx (Diff. Calc, Art. 7) ; accordingly, the process of inte-

gration may be regarded as the finding the sum* of an infinite

number of such elements.

We shall postpone the consideration of Integration from

this point of view, and shall commence with the treatment of

Integration regarded as being the inverse of Differentiation.

2. Elementary Integrals.—A very slight acquaint-

ance with the Differential Calculus will at once suggest the

integrals of many differentials. We commence with the

simplest cases, an arbitrary constant being in all cases under-

stood.

On referring to the elementary forms of differentiation

established in Chapter I. Diff. Calc. we may write down at

once the following integrals :

—

x'^dx m + 1

fdx_ - I

J a;™ {m- 1)*'"-^" ^"'

^ = log(.). (J)
X

f . cos ma; f sm mx
sm mxdx =

, cos mx dx =
. (c)

J m ' ] m ^

'

f dx , f dx—r- = tan x, -t-r- = - cot x. (d\
J cos'* J sm^a; ^ '

* It was in this aspect ttat the process of integration was treated by Leib-
nitz, the symbol of integration J being regarded as the initial letter of the word
stmt, in the same way as the symbol of di£Eeieatiation d ia the initial letter in
the word difference.
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dx X ,

.

X' a

a' + x' a1

j^dx = ^; |«^^^~. {9)

These, together with two or three additional forms which
shall be afterwards supplied, are called the fundamental* or
elementary integrals, to which aU other forms,t that admit
of integration in a finite number of terms, are ultimately re-

ducible.

Many integrals are immediately reducible to one or other
of these forms : a few simple examples are given for exercise.

Examples.

3-

4-

S-

6.

fdx

tan^(?ar. „ -log (oosit)

yx,

fxdx
7fr7»- ,,-^l-rXh

I

I e<"dx.

Bec0.

I

J
" a

- e"'

* The fundamental integrals are denoted in this ohapteiby the letters a, t, e,

&a. ; the other formulae by numerals i, 2, 3, &c.

t Byintegrahle forms are here understood those contained in the elementary
portion of the Integral Calculus as inyolving the ordinary transcendental func-

tions only, and exduding what are styled EUiptlc and Hyper-Elliptic functiona.

[1*] ' „--
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10.
I
^^

.

„ JJic".

Elementary Fi/mis of Integration.

fdx
J

r dx

I

-

II. [—^. „ log («-«).
i X — a

3. Integral of a Sum.—It follows immediately from
Art. 1 2, DifE. Calc, that the integral of the sum of any number
of differentials is the sum of the integrals of each taken sepa-

rately. For example

—

\{Aiif +33^"+ Cif + &o.) dx=A /a!" dx +B^ af'dx + Clardx + &c.

^«'»" .B««" Ccf*"- „
+ &o. (2)m+ 1 n + I r + I

Hence we can write down immediately the integral of any
function which is reducible to a finite number of terms con-

sisting of powers of x multiplied by constant coefficients.

Again, to find the integrals of cos^xdx and sm'xdx; here

f , , f I + cos 2x , a; sin 2* , ,

00s xdx = dx = - + , (3)

Bin^xdx -
I - cos 2X , X Bimx

dx=- —

.

(4>
2 24

A few examples are added for practice.

Examples.

c{i-x^)'dx ^ , , !

I

.

. Ans. log a; - a;' + -

J a;
°

,

clx-2) dx /- 4

J X's/x VX

3. J \&'s^»Ax = /(sec'a - i) dx. „ tan x-x.



Integration hy Substitution.

sin (m + n)x sin (»» — «) as

4. f cos mx cos nxdx. Ana. —}
— H -, r—

•

' 2{m + n) 2(m~n)

sin(»j - »)« Bmtm + n)x
I !. \smmxsni.nxax. ,,

—
}

;
) r-.

' > J " 2{m-n) x(m + n)

€. I . / dx. ,, a sin-i v^a^ - (c'^.

3\a-x a

Multiply the numerator and denominator by ya + x.

7. J

»

yx + adx. ' Ans. - {x + a) a {x + a) .

«. 1-7=—7-- .. ^(('^ + «') -^ )•

Multiply the numerator and denominator by the complementary Biird

V a; + a — y x.

Ia + bx , . ix ab' — ia' , , , ,, .-—j;- dx. Am. — + ——— log (» + S'a;).

a \ hx . b i i

_ « + d« J fflS' — ba'
Here ^_^ = + .

o' + 4'» b' V {of + 4' a;)

'

4. Integration by Substitution.—The integration of

many expressions is immediately reducible to the elementary
forms in Art. 2, hy the substitution of a new variahle.

For example, to integrate {a + hx)'"' dx, we substitute z for

a + IX-, then dz = hdx, and

^ '
J 6 {n+ i)b {n+ i)h

Again, to find

1

x^dx

{a + te}"'

as befoK

[ {z-afdz

we substitute z for a + 5a?, as before, when the integral be-

comes

I ["(z - cC)'^dz

2a
or

h^\{n- 3) s"-= (« - 2) s"-' (» - i) z»
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On replacing % hj a + hx the reqtdred integral oan be ex-

pressed in terms of x.

The more general integral

f x"^dx

J-f

{a + &«)"'

teger, 1

(z - a)"

where »» is any positive integer, by a like substitution be-

comes

Expanding by the binomial theorem and integrating each

term separately the required integral can be immediately

obtained.

Again, to £nd

r dx

]»"•(« + &«)"'

we substitute a for - + b, and it becomes
X

(s - h)"

which is integrable, as before, whenever m + « is a positive

integer greater than unity.

Thus, for example, we have

r dx I / X \

}x{a + bx) a \a + bxj

It may be observed that all fractional expressions in which
the numerator is the differential of the denominator can be
immediately integrated.

For we obviously have, from (6),



Integration of
dx

9? - 0?

Examples.

J a +

sin X dx

-1 f i^dx
• ^ /

•

- 5.

6

b cos ic'

a^dx

3. *^jlog^-.

4. f'^^^^.
J a; log it;

f , x' I

ji«». —
log (a + i cos a;)

log a

, x'dx }^

f
t^g

J a;' (a + *»)'

!a;c?a;

(a + te)l"

(a + te)i'

J X'

- em '
I
- 1 .

4 \«/

-aoga;)''.

log (log a;).

log (a + hx) 3«2 + 4a}a!

43
'*'

2l^{a\hxf'

2? a + to ff+ lix

a? X <^x (* + 4a;)'

2 (a + 4a;)* 2a (a + hx)i

3P 42

3 (a + 4a;)* 3a (a + 4a;)t

5i'

- tan"'
lia; - a

x^iax — ci^

Assume 2aa; — <fi = z^, then «(?a; = Z(&, and the transfoimed integral is

f2dz
a' + zs"

5. Integratioii of — -.

x' - a'

Since -^ = — | ,

X - or 2a \x - a x -i- a)

— a

a'
[h]

C dx I , a; -

This is to be regarded as another fundamental formula
additional to those contained in Art. 2.



Integration of -

a + 2hx + cx^'

In like manner, since

(a!-a)(«-/3) a-fi\x-a a;-/3j'

we have ^^ rr = -^ log^^. (6)
J (a; - a) (a; - /3) a - /3 ° « - p ^ '

EXUCPLES.

-; • Am. - log =.

f (fa i^ !'-%
'

J(a + 2)(ar-3)' "
S ^^^T^'

J
»a + 9a; + 2o' " °^ a: + 5"

^- » -7= log -z..
^ ^^/ 3 a: + v/ 3

a + 26a; + cx^'

This may be written in the form

cdx

r dx

6. Integration of

(ca; + Vf + ac-h"

or, substituting z for ca; + &,

z^ + ac — b^'

This is of the form (/) or {h) according as ac - b^ is positive
or negative.

Hence, if ac > b' we have

dx I , , ex + b
taii->-—== (7)a + 2bx + ex'' y^ZTb^ ^ac - 6»"



Integration of- ' -

a + 2bx + cx^

If ac < b\

f ± = 1,^ cx + h-^/F^
]a+2bx + cx' z^W-ac ex + b + -/b^ - ao

This latter form can he also immediately obtained from (6)

.

In the particular case when ao = b', the value of the inte-

gral is

- I

7. Integration of

ex + b'

(p + qx) dx

a + zbx + ex^'

This can at once he written in the form

q {b + ex) dx pc - qb dx

c a + 2bx + ex' c a + zbx + ex''

The integral of the first term is evidently

— log (a + 2bx + ec^),
2e ° '

while the integral of the second is obtained by the preceding
Article.

For example, let it be proposed to integrate

{x COS0 - \)dx

(i^-2xca%Q-\-
1'

The expression becomes in this case

cos 6 (x - cos 6) dx sin' 6dx

1^ - 2;8 cos + I {x ~ cos QY + sin^ '

hence

f (« C0S9 - !)«?» COS0, ,„ . .

-^ 4 = log (»" - 2x cos 0+1)
J

»'' — 2a; cos y + I 2 ° ^ '

. rt , , a; - cos .

- sm tf tan"'—^

—

^r—

.

(0)sm0 ^ '
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When the roots oi a + zbx + ex' are real, it -will he found
simpler to integrate the expression loj its decomposition into
partial fractions. A general discussion of this method will'

he given in the next chapter.

EXAUFLES.

f
^^ -^

In,. f2x-r+ -/s

f <&
, ,

I
—

—

. „ taii"'(a!+ 2).

fdx
I - 2a; + 2a:2

' * '

8. Exponential Talne for sin dand cos Q.—By com-
paring the fundamental formulae (/) and (A) the well-known
exponential forms for sin Q and cos can he immediately
deduced, as follows

:

Suhstitute z v^- i for x in hoth sides of the equation

{ dx I ^ fi + x\

]r^ = -2^°^[7^x)^''"'^*-'

and we get

dz ^
, /i + zy^\—i = /— log 7= + const.;



Exponential Forms of sin and cos 6. 11

or, by (/), tan-' 2 = —^ log- (

^-— .— ) + const.

2t/- I ° \l -Z\/- 1/

Now, let s = tan 0, and this becomes

. I 1 A + -/- I tan 0\
,

a =—^=1 log I -;=—— I + const.

2^/- I \i - •/- I tan 0/

When = o, this reduces to o = const.

XT 2;.^/l
COS + >;/- I sin . . / . ,,.,

Hence e'«v-' = -;=; = (cos 9 + -/- i sin 0)%
cos - '/- I sin r^^g ^ ^.,. .^ - '

or e*^ = cos + -v/- i sin 0,

e-«V=i = cos - -/^ sin 0.

9. Integration of
V^a;^ + a*

Assume* ^/i^~±^=& - x,

then we get + a^ = s'' - 2a:z,

hence (s — x)ds = zdx, or = —

:

' s - X %

•• y^r^^ =
J
7 = log« = log {x + yx' ± a'). {1}

This is to he regarded as another fundamental form.

By aid of this and of form (e) it is evident that all ex-

pressions of the shape

dx

*/a + 26a; + c^

* The student will better understand the propriety of this assumption after

reading a subsequent chapter, in whieh a general transformation, of which the
aboye is a particular case, will be given.
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can be immediately integrated ; a, b, c, being any constants,

positive or negative.

The preceding integration evidently depends on formula
{i), or (e), according as the coefficient of «* is positive or

negative.

Thus, we have

1 , ,
= ~7^ log \cx + b+ \/c(a + 2bx+ cx^) ),

(lo)

r dx \ . ,( ex -h \ , .

. = = —= sm-M , (1 1)

J -\/a + 2te - coi? ^/c \\/ac + bv

cbeiag regarded as positive in both integrals.

When the factors in the quadratic a + zbx + cx^ are real,

and given, the preceding integral can be exhibited in a

simpler form by the method of the two next Articles.

10. Integration of
y/{x-a){x-fi)

Assume x — a = z^, then dx = 2zdz

dx
= zdz

;

hence

'/x — a

dx zdz

</[x-a){x-[5) yz' + a-fi'

r dx

•J 1

= 2

\/{x-a){x-P) Jys''+a-i3

= 2 log (s + v/2' + a - /3), by {i),
^^

f
dx



Exponential Forms of sin 6 and cos 9. 13

II. Integration of
.

yix - a){(i - a>)

As before, assume x - a = z', and we get

do) 2ds

-/(«-a)(j3-a;) y^-a-z''

Hence, by (e),

f dm . Iso - a
,.

' = 2 Sin \-—

.

Otherwise, tlius

:

assume x = a cos^ fl + /3 sin' 9,

then /3-« = O-a)co8'0, x - a = [^ - a) sia" 9,

(i3>

/and dx= 2{j3- a) sin cos rffl

;

. ,-'

hence y- ^ r = 2d9; \
^/ {x - a){(5 - x) V,,^^

...
f

'^^
= 20 = 2 sin-^ /^

}^/{x-a){j5-x) V/S-a"

12, Again, as in Art. 7, the expression

(p + ga) (fe

ya + 2bx + ex'

can he transformed into

q (J + ca?) dx pc — qb dx

** y^a + 2 Ja; + ft?;* ^ V a + 2hx + ca^

and is, accordingly, immediately integrahle hy aid of the-

preceding formulae.
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Examples.

f dx
Ans. 2 log (•;/«; + '/x - a).

' '^^ — ax

' Y ax - x'

3-
I

y " -• „ 2 Biii->\/a; - i.

J V 3* — a:' — 2

4- f ^ „ log {2X + I + 2v/rTaT'a^.
J ^/ I + I + a;^

5"
/ ; <fa = \/(« + »)(»' + *) + (a -*) log (v/a + «+v^i!! + J).

Multiply the numerator and denominator by '\/^x + a.

f- f
<^x . 2a: + I

D- 1
—

. Ans. sin ' ——-.
•' \/ 1 —X — x' w S

J V^(« + *a:) (a' - i'a;) V **' ^ «*' + ba'

'

%. Show, as in Art. 8, by comparing the fundamental formulse (e) and (t),

that

13. Integration of

Let X - p = —, then

fl + 'v/-iBin9 = e»^.

{x-p) V a + 26aj+ ca;'

dx dz , I +
i

-% and X = =

X -p %

dx^ r - d%

{x -p)\/a+2bx + ex'' J v/«2*+ 262(1 +;p2)+c(l +^s)*

f ^

where a' = c, b' = b + cp, c' = a + 2&p + cp^.

The integral consequently is reducible to (10), or (11), ac-

cording as e' is positive or negative.



dx
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(a + ca;")*

Examples.

Ans. - COS"' I
- 1

.

a \xl

€.

J X'Yx^ — a'

f
dx /y^r7"p_l\

)v^^' " 'V—s— ]•

!dx jl — X

{i + x)^T^^' " "^i+x'

—
;

-^n»- -7-- log ( y-", =:,] •

•' x\/ a + iix-i-cx' Ya \a + tx+Y aY a + itx + cx'i

f dx , I ../*»-« \
1
— — - ^«». —7^ sm-i I

—
)

.

'
®V<!a;'' + 25» - a -v/a \x'\/ati+b''

c dx I . IX'/2\
1

- „ —7^ sin-i I 1

.

J (I + a)v' i + 2a;-»' V2 \i + 't/

7.
I

„ sin-i
(

=

—

r).
J (i + »)\/l +K- «" H'+^l's/i'

14. The transformation adopted in the last Article is one
of frequent application in Integration. It is, accordingly,

worthy of the student's notice that when we change x into

I , dx dz , . , ., „ I «te (fe
- we have — =

; and, m general, 11 a;" = -, — =
.

s X z o »
z X n%

These results follow immediately from logarithmic difEer-

•entiation, and often furnish a clue as to when an Integration

is facilitated by such a transformation.

For example, let us take the integral

f dx

]x{a-v hx")'

Here, the substitution of - for a" gives

I r <fe

n]az + b'
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The value of whicli is obviously

I I / x^ \
log {az + b), or — log r— )

na ° ^ " na °\a+ *«"/

Again, to integrate

dx

X's/ax^ + b

assume «" = -^, and the transformed integral is

2 f ds

This is found by (e) or (i) according as fi is positive or

negative.

15. Integration of ; r;-
{a + ex^)^

Let x = - and the expression becomes

the integral of this is evidently

I X
-., or

a {az' + c)i' a{a + ca') J*

Hence -. -rr. = —. rr-,. (i4)>
J (a + cx'p a{a + cx'')i ^ ^'

16. To find the integral of

dx

(a + 2bx-v co^)^'

This can be written in the form

<^dx

which is reduced to the preceding on making Ci» + J = s..



Integration of
sin 0'

Hence, we get

{ dx b + ex

} {a + 2bx + cx')^ (etc - ¥) {a + zbx + cxy^'

Again, if we substitute - for x,

xdx . - ch
becomes

(15)

(a + 2bx + cx^)^ (as' + 25s + cf

and, accordingly, we have

f xdx a+bx

J (a + 26a! + c*')* {ac - b''){a + 25a! + ca?y

Comtining these two results, we get

f {p + qx) dx bp - aq + (cp - bq) x

J (a + 26a! + cx^)^ {ac - 6") (a + 26a; + cx^)^'

^ <^9 ^ de
17. Integration of -.—« and ;,.sm a cos

(16)

It will he shown in a subsequent chapter that the integra-

tion of a numerous class of expressions is reducible either to

that of -;

—

n, or of
2i

'• '^® accordingly propose to inves-

tigate their values here. For this purpose we shall first find

the integral of -r-^ 7,.° sm cos ft

dO

^ dQ cos' 9 ditanO)
Here

consequently

sin 9 cos 9 tan 9 tan 9

d9

sin 9 cos 9

[2]

= log (tan 0). (17)
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Next, to find tlie integral of

d9
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a + 6 cos tf.

ja

1 8. lategration of
a + h cos Q'

This can be immediately written in the form

dQ
a a'

{a + h) cos' - + (a - 6) sin" -

n

sec'- dd
2

or —
a + b + (a -b) tan' -

2
a

on substituting z for tan - this becomes

2dz

a + b + {a - b)s^

Consequently, by Ex. 6, Art. 2, we get

(i) when a> b,

-^—. = ^^= t-^-'
I /— tan ^1 (20)

«i + 6cos0 y«-^_6^ \4a + b^^ 2]'
^^°^

(2) when a < i, by formula {h),

log ^ i \.[2l)
^Q J I

-v/j + a + v^6 - a tan

a + 6 cos ^^2 _ ^2 °
"^i

1^^^ Q .'

-v/j + a - v/S - a tan -

If we assume a = J cos a, we deduce immediately from
the latter integral

J cos a + cos sm a °

r a -6']

cos-

L
f

J
The integral in (20) can be transformed into \

f
'^^

= '
cos- i^JiS^^S^] ' I

J a + 6 COS vV~*'- (a +6 cos 0)' V^'
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In a subsequent chapter a more general class of integrals

which depend on the preceding will be discussed.

19. Methods of Integration.—The reduction of the

integration of functions to one or other of the fundamental
formulae is usually effected by one of the following methods :

—

(i). Transformation by the introduction of a new va-

riable.

(2). Integration by parts.

(3). Integration by rationalization.

(4). Successive reduction.

(5). Decomposition into partial fractions.

Two or more of these methods can often be combined
with advantage. It may also be observed that these different

methods are not essentially distinct : thus the method of

rationalization is a case of the first method, as it is always
effected by the substitution of a new variable.

We proceed to illustrate these processes by a few ele-

mentary examples, reserving their fuller treatment for sub-

sequent consideration.

20. Integration by Transformation.—^Examples of

this method have been already given in Arts. 4, 10, &c. One
or two more cases are here added.

Ex. I. To find the integral of sin'* cios^xdx.

Let sin » = y, and the transformed integral is

p'(i - 2/Vy =yfdy - y^dy-

^ f <fdx
Ex. 2.

y^ sin'*

I + e

Let ^ = y, and we get

J rT7 = ^^"""^ = **''"' ^''^-

21. Integration by Parts.—"We have seen in Art. 13,

Diff. Calc, that

d{uv) = udv + vdu;

hence we get

uv = j udv + J vdu,

or iudv = uv -j vdu (2.2)
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Consequently the integration of an expression of the form
udv can always be made to depend on that of the expression

The advantage of this method will he best exhibited by
applying it to a few elementary cases.

Ex. I. wiT^xdx = xsm'^x-
xdx

Dsr X dx

e"'' xdx.

Ex. 2

Let

j.lo

Ex. 3.

Let

f xtf" f
xeF^dx =

Ex. 4. f

Let

e"' si

Similarly,

= X sin"^* + \/i - x

X log X dx.

a?
u = log x,v = —, and we get

x^ log X I r „dx x''

f

I
»'— = — (log a;

—

a; - u, — = V, then
a

xe'" dx= — dx= — \x ).

a \ a a \ a,

e"'^ sin mx dx.

sin mx = 11, — = v, then

sin mx dx
e"^ smdn mx m C

a a]

e"^ cos mx
e"" cos mx dx = h

e"" cos mxdx.

sin mx dx.
m f— e™ sii



22 Elementary Forms of Integration.

Substituting, and solving for Je""^ sin mxdx, we obtain

f . , e"' ia sin mx - m cos mx)
e"* sin mxdx = -.

J
«' + «r

In like manner we get

f „, ,6"^ (a cos mx + m sin ma;)
e"* cos mxdx =—^^

.

J a' + to'

Ex. 5. ^/a^ + x^ dx.

Let Va' + a'' = u, then

-v/ffl' + !e'dx = x \/a^ + a? -\
;

•' •' -v/a' + x^

V t
\ (hos \ Cu (id*

also V a" + (i?dx = a^\ — +
,

J J v/a' + x^ J -/a'' + «'

Hence, by addition, and dividing by 2,

x\/(t' + «* a

(23)

(24)

jv/a
„2 (j3

2
+ — log (a; + v/a" + «'). (25)as" + x'dx^

Ex. 6.
j
log (a; + a/x> ± a") dx.

Here I log {x + v^«' + «') rfa; = « log (^?^!^±a^.

r xdx

= a; log (a; + \/a;' ± «') - y^x' + c^. (26)
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Expanding by the Binomial Theorem and integrating the

terms separately, the required integral can be immediately
C^ CvX

found. It is also evident that the expression ^ can
(a + bx)t

be integrated by a similar substitution.

23. Integration of
j^:^^^,

where «i is a positive integer.

Let a + cs" = s" : then <cdx = — , x^ = : and the
c c

transformed expression is

(2'- a)"'dz

This can be integrated as before. It can be easily seen

that the expression ^ is immediately integrable by
{a + cix?y

the same substitution.

A considerable number of integrals will be found to be
reducible to this form : a few examples are given for illustra-

tion.

Examples.

1. —
. Am. '- - (l - a;2)i.

J^/I-:c= 3
' '

Is^dx e' 22' , .—
. J,

• + 2 ; where « = a/ i + «'•

ofdx — (2« + ^ex^)far
(a +(_a + cx-y ^ic' (a + cx-)'-

24. It is easily seen that the more general expression

/(«'•) xdx

y^a' + cx^

where /(»') is a rational algebraic function, can be ration-

alized by the same transformation.
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Again, if we make x = - the expression

dx

X" (ffl + c*")*

transforms into

(as° + c]i

'

and is reducible to the preceding form when n is an evenposi-

tive integer.

- Hence, in this case, the expression can he easily integrated

by the substitution [a + cx^]i = xy.

It will be subsequently seen that the integrals discussed

in this and the preceding Articles are cases of a more general

form, which is integrable by a similar transformation.

EXAITFLES.

J a:6 (I + a-^)!-
» ~ ,5a, \ a;2 «*]

dx
25. Integration of

{A+ Ox") {a +cxy^'

As in the preceding Article, let (« + cx^)i = as, or

a+ CO? - x^z' : then, if we differentiate and divide by 2x, we
shall have

J ij (to dz
cdx = zhlx + xz as, or — =

xz c

dx dz

' '
{a + cx')i c - z''

and the transformed expression evidently is

dz

(Ac - Ca) - Az^'

[27)
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This is reducible to the fundamental formula [h], or (/),

,. Ac - Ca . ... ,.

aooording as ^ ^^ positive or negative.

Hence, (i) if j— > o, the integral is easily seen to be

(^/A(a + cs^) -^ x^/Ao - Ca\ , .,

°^
K^Aifl + C3^) - x>/Ac - Ca)z-Za {Ac - Ca)

(2). If — < o, the value of the integral is
,i

'
{

I ,
,X\/Ca - Ac

,
, \

, tan-' ^. . (29)
-

yA (
Ca - Ac) '/A{a + ex'')

Examples. jt^

f
^^ '

. , ( S" \

^ I . 2^/3 + 4g'-' + 5^

(4-3»='^)(3 + 4*')»' " ^ °^2>/iT^-s^'

26. Rationalization by Trigonometrical Trans-
formation.—It can be easily seen, as in Art. 6, that the

irrational expression \/a + zbx + cx^ can be always trans-

formed into one or other of the following shapes:

(i) (a' -.=)*, (2)(a^ + 2^)4, (3) [f-a^)\;

neglecting a constant multiplier in each case.

Accordingly, any algebraic expression in x which con-

tains one, and but one, surd of a quadratic form, is capable

of being rationalized by a trigonometrical transformation :

the first of the forms, by making 2 = a sin ; the second, by
s = a tan % ; and the third, by s = a sec 0.
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For, (i) when s = a sin Q, we have (a* - s^)^ = a cos Q, and
dz = a cos OcW.

(2). When s = a tan 0, .... (a' + 2')^ = a sec B, and

cos^y

(3). When 2 = a sec0, . . . . {s^ - c^Y = a tan d, and
ffe = a tan Q seo Odd.

A. ntunber of integrations can he performed hy aid of one
or other of these transformations. In a subsequent place this

class of transformations will he again considered. For the

present we shall merely illustrate the method by a few ex-

amples.

Examples.

Let X = tan B, and the integral beoomea

100s ede _c <?(sin e) _ i

sin^e J ein^fl ~ sin

fdx
la' - rt\^

v^r

' {a- - ««)

Let X = asmd, and we get

If rffl _ tan 9

2 -/a'«''V " -*

TMs has been integrated by another transformation in Art 15.

fdx

Let X = seo fl, and the integral becomes

f n „ ,„ , , , . ,
sin ens 8

\ cos- 9(?8 ; or, by (3) Art. 3, h -

:

accordingly, the value of the integral in question is

V a;- —

2a;2 3
+ - sec"i«.
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0a tan x ^^

eosfle"»(?e; or by (23),

Let X = tan 9, and we get

«"» {a cos 9 + sin 9)

ITenco

I +a'

^ntaii"'x (« + «) e" 'I"" *

+ 3:')^ (I + ffi'-)(i +a;'')l

f<fo sin"'
I I

.

Let = sin' 9, or a; = a tan' 9, and the integral becomes
a + X

flj9rf(tan'9), or a J9(?(sec'9) : (since sec' 9 = I + tan29).

Integrating by parts, wo have

; 9 d (sec' 9) = 9 sec' 9 - J sec' edB = e aeo' 9 - tan 9 :

hence the value of the proposed integral is

(a + x) tan"' 1-1 — (sic)*.

It may be observed that the fundamental formulae («) and (/) can be at once

obtained by aid of the transformations of this Article.

27. Remarks on Integration.—The student must
not, however, take for granted that whenever one or other of

the preceding transformations is applicable, it furnishes the

simplest method of integration. We have, in Arts. 9 and 13,

already met with integrals of the class here discussed, and
have treated them hy other suhstitutions : all that can he
stated is, that the method given in the preceding Article will

often he found the most simple and useful. The most suit-

able transformation in each case can only be arrived at after

considerable practice and familiarity with the results intro-

duced by such transformations.

By employing different methods we often obtain integrals

of the same expression which appear at first sight not to

agree. On examination, however, it will always be found
that they only differ by some constant ; otherwise, they could

not have the same differential.
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28. Biglier Transcendental Functions.—"WTienever

tlie expression under the radical sign contains powers of x
beyond the second, the integral cannot, unless in exceptional

cases, be reduced to any of the fundamentetl formulse ; and
consequently cannot be represented in finite terms of x, or of

the ordinary transcendental functions : i. e. logarithmic, ex-

ponential, trigonometrical, or circular functions. Accord-
ingly, the investigation of such integrals necessitates the

introduction of higher classes of transcendental functions.

Thus the integration of irrational functions of «, in which
the expression under the square root is of the third or fourth

degree in x, depends on a higher class of transcendentals

called Elliptic Functions.

29. The method of integration by successive reduction is

reserved for a subsequent place. The integration of rational

fractions by the method of decomposition into partial frac-

tions will be considered in the next chapter.

30. Observations on Fundamental Forms.—From
what has been already stated, the sign of integration (J) may
be regarded in the light of a question : i. e. the meaning of
the expression J F{x) dx is the same as asking what function
of X has Fix) for its first derived. The answer to this ques-

tion can only be derived from our previous knowledge of the

differential coefficients of the different classes of functions, as

obtained by the aid of the Differential Calculus. The number
of fundamental formulse of integration must therefore, ulti-

mately, be the same as the number of independent kinds of
functions in Algebra and Trigonometry. These may be
briefly classed as follows :

—

p.

(1). Ordinary powers and roots, such as a;™, x^, &c.

(2). Exponentials, a", &e., and their inverse functions;

viz., Logarithms.

(3). Trigonometric functions, mix, tana;, &c., and their

inverse functions ; sin'^a-, tan"'a;, &c.

This classification may assist the student towards under-
standing why an expression, in order to be capable of inte-
gration in a finite form, in terms of x and the ordinary
transcendental functions, must be reducible by transforma-
tion to one or other of the fundamental formulse given in
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tMs chapter. He will also soon find that the classes of in-

tegrals which are so reducihle are very limited, and that the

large majority of expressions can only be integrated by the

aid of infinite series.

The student must not expect to understand at once the

reason for each transformation which he finds given : as he,

however, gains familiarity with the subject he will find that

most of the elementary integrations which can be performed
group themselves under a few heads; and that the proper

transformations are in general simple, not numerous, and
usually not diflEicult to arrive at. He must often be prepared

to abandon the transformations which seemed at first sight

the most suitable : such failures are not, however, to be con-

sidered as waste of time, for it is by the application of such

processes only that the student is enabled gradually to arrive

at the general principles according to which integrals may be

classified.

Many expressions will be found to admit of integration

in two or more different ways. Such modes of arriving at

the same results mutually throw light on each other, and will

be found an instructive exercise for the beginner.

31. Definite Integrals.—We now proceed to a brief

consideration of the process of integration regarded as a sum-

mation, reserving a more complete discussion for a subsequent

chapter.

If we suppose any magnitude, u, to vary continuously by
successive increments, commencing with a value a, and termi-

nating with a value /3, its total increment is obviously repre-

sented by /3 - a. But this total increment is equal to the sum
of its partial increments ; and this holds, however small we
consider each increment to be.

This result is denoted in the case of finite, increments by
the equation

S (Am) =/3-a;
a

and in the case of infinitely small increments, by

(30)du = (5 - a;
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in wliich /3 and a are called the limits of integration : the

former being the superior and the latter the inferior linait.

Now, suppose u to he a function of another variahle, x,

represented by the equation

u =/(«)

:

then, if when x = a, -u becomes a, and when x = b, u becomes

/3, we have

a=f{a),fi^f[b).

Moreover, in the limit, we have

da ==f'(x) dx,

neglecting* infinitely small quantities of the second order

(See Diff. Calc, Art. 7).

Hence, formula (30) becomes

I
/(«) ^r» =/(6) -/(«)

;

(31)

in which 6 and a are styled the superior and the inferior limits

of X, respectively.

It should be observed that the expression f'(x)dx, re-

i

presents here the limit of the sum denoted by S {/{x) Ax),
a

when Ax is regarded as evanescent.

In the preceding we assume that each element /'(«) dx is

infinitely small for all values of x between the limits of inte-

gration a and b ; and also that the limits, a and b, are both

finite.

A general investigation of these exceptional cases will be
found in a subsequent chapter : meanwhile it may be stated,

reserving these exceptions, that whenever /(a;), i.e. the integral

oif'{x)dx, can be found, the value of the definite integral

\f'{x) dx is obtained by substituting each limit separately

* In a subsequent chapter on Definite Integrals a rigorous demonstration
will be found of the property here assumed, namely that the sum of these

quantities of the second order becomes evanescent in the limit, and consequently

niay be neglected. Compare also Art. 39, Mff. Gale.
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instead of xhvf{x), and subtracting tlie value for the lower

limit from that for the upper.

A few easy examples are added for illustration.

7-

8.

I icdx.

fsin e de.

f dx

J a" + x'

f? . -
1 em-
Jo

Examples.

Ans. .

n+ 1

4e

xdx.

f* 5 J IT I

5. I OX!?xdx.
>0

6. I . sill?xdx.
la

t^dx

i

P dx

i\/x — a){^ -x)

See Art. 11.

Jo
... fJo

13. I ; .where a >i.
J„ « + cos X

(^ dx

" 8 4

rJo

ji,

J 1 +«+»-"

n

I eos'a; (?j:.

f^ xdx I

J 2 f + a;- ' 2 ^

3-/

3

2_-_4

3-5'

" -/«nri

I — 2» cosa;+ a- I — a'
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56. Differential coefficient of cosec x.

Let y = cosec x
;
proceed as in the last example, and we

find

dy _ cos X
dx sin* X

'

57. Since tan x, cot x, sec x, and cosec x are all fractional

forms, we may deduce tlie differential coefficient of each of

these functions by Art. 31 from those of sin x and cos x.

Thus, let •

sin X
y = tan x = ,^ cosaj

dsmx . dcosx
, cosa; —; sma;—j

—

^, - ay dx dx . ^ „^
therefore -^ = „ , Art. 31,

dx cos X

cos' X + sin' X ,= 5
, Arts. 51 and 52,

cos' X

1

cos a;

Similarly we may proceed with cot x, sec x, and cosec x.

Since vers a; = 1 — cos x, the differential coefficient of vers x
by Arts. 27 and 33

= — differential coefficient of cos x

= sin X.

T. D. C.
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CHAPTER IV.

DIFFERENTIAL COEFFICIENTS OF THE INVEESE TRIGONOME-
TRICAL FUNCTIONS AND OF COMPLEX FUNCTIONS.

58. Let y = ^ [x), so that y is a known function of x ; it

follows from this that x must be some function of y, although

we may not be able to express that function in any simple

form. The best mode for the reader to convince himself of

this will be to recur to algebraical geometry and suppose x
and y to be the co-ordinates of a point in a curve the equation

to which is y = <f>
(x). Fot every value of x there will be

generally one or more values of y, positive or negative, as

the case may be. So for any value of y there will be

generally one or more definite values of x, which, as they
really exist, may be made the subjects of our investigations,

even ' although our present powers of mathematical expres-

sion may not always furnish us with simple modes of repre-

senting them.

59, A simple example will be given in the equation

y = x'-2x+l (1).

Solve this equation with respect to x, and we have

x=l±y^ (2).

Here (2) shews that. if any value bo assigned to y we must
have for x one of two definite values.

Now in (1), X being the independent variable and y the
dependent variable, we have by Arts. 28, 33, and 44,

l|=2-2 («)•
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In like manner, with the same condition, we have

aos^ nxdx = -. (37)
Jo 2

Again, to find the value of

fP

\/{x-a) {^-x)dx.

Assume, as in Art. 1 1, « = a cos' + /3 sin' ; then, when

fl = o, we have x = a; and when = -, a; = |3.

Hence, as in the article referred to, we have

It

1
^
^(x-a){!^-x)dx = 2 (j3 - a)M \vD? e cos' ed9.

Jso 2 ['sin'6lcos'6lcZfl = i [W'2 flrffl

Jo Jo

= i|^sin'^«f0 =
^;

..^^y{x-a){p-x)dx=l{(i-ay. (38)

[Sa]
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i

Examples.

J {« + Bin a;)»
" 2 (a; + sin a;)""

[ajsinada!. i, sin»- a; cos a:.

f
'-^^ dx. „ 2 log (I + a:) - x.

J i + a;I(o + Ja;")
'»''

f
"^'^^ _ ?

I

^" J(«»+»»)r " 3 (»' + =»')»

t dx . ,
jx+ I

f a:Var 1 ,
/'^-'\

o. f ^ . 1. —7 tan-1 (
— tan a: )

.

^ Jo»cos«a; + A«sm«a! " o* \« /

.0. f^?^. „ -^^los(«cos»« + «sin».).

J a + i tan^a; i (4 - «;

icos (log x) dx' . ,, ,i—*—i— . „ Bin (log a).

dx
1 2. Show that the integral of — can he ohtained from that of le^dx.

;gm+l _ (im*-l

Write the integral of a;"rfa: in the form ; and, hy the method of

indeterminate forms, Es. j, Ch. It. Diff. Calc., it can easily he seen that the

true value of the fraction when m+ l=o is log ( -
J

, or log x, omitting the

arbitrary constant.

13. /e''»sin»ia;cos«a!i&.

This is immediately reducible to the integral given in formula (23).

14. 1 :—

.

Ans. - tan-' I —=^—— •

'J5 + 4Bm« 3 \3/



Examples.

J (i + ««
Ans.

3(« + g)^(4«'-3«)
16. I i{a + »)!<&.

Let « + »«« = 2'.

,8 f (?_+ ff^o^ '")''*
[
KP + q

J a + i- i cos :);

This is equivalent to

:qdx
^
pi- ga t dieCqdx pi -ga r

1 b ^ b ]a+ b cos x'

and accordingly can be integrated by Art. 18.

xo'dxIxe'' e*

(i + »)'
I + a:"

xdx

2

fxdx I

f dx I /y/ 1 + a' - A
J a:-\/a»TT " 3 Xv^l +aiS + 1/

let a;' + I = s',

^3. f-^. ,. I,ogfi^^±^^\

24. Integrate

%y aid of the assumption x

a + * cos fl

i + a cos 9

a + i cos fl

The expression transforms into

dx

\/(a»-«»)(i-a:»)'

integi

^^TZli log {x + v^a^ - I), &c.

accordingly, when a>b, its integral is _ sin-'a; : and when « < J, it ia
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»5. Deduce Gregory's expansion for tan"'* from formula (/).

When * < I, we haye

: I - it' + »* - a;' + &e.
;

I + »=

t dx 3? sfi x' .

.: tan-' x = \
7 = a + + &o.

J I + *' 3 5 7

No constant is added since tan~' x vanishes with x.

26. Deduce in a similar manner the expansions of log (i + x), and sin''!-^

Ja

27. Find the integral of
a + 4 cos fl + c sin-fl

This can be reduced to the form in Art. 18, hj assuming - = cot a, &e.

dx

Ua + l

Ana. log } )

-/ 02 + 42 (4-«x4'\/(a» + *2)(i + «»))"

This can be integrated either by the method ofArt. 13 or by that of Art. 2J..

»9-

3°-

31-

3*

1
—

.
. Am. - sec ' I x ].

J x^x" - I « V /

IT

14
sin xdx I

,

•
11 log (l + \/2'

J I,
cos a!

w s \ '
V

.

dx If« di

(4 + 3^)5' " 8"

33. j„ v/«=-a:Var.
irffl'

4

4
34. 1 K versiuM -

J
<fe.

IT

f 8 «&! I ,

35. f^^^. „ Itan-i(")^ Jo5 + 4sin* "3 ^3/
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OHAPTEE II.

INTEQKATION OF EATIONAL FRACTIONS.

34. Rational Fractions.—A fraction whose numerator
and denominator are both rational and algetraic functions of

a variahle is called a rational fraction.

Let the expression in question be of the form

aa;'" + J®"^' + co^^ + &o.

aV + fiV-' + c'a;"-' + &c.'

in whioh m and n are positive integers, and a, J, . . . a', 6', . .

.

are constants.

In the first place, if the degree of the numerator be
greater .han, or equal to, that of the denominator, by division

we can obtain a quotient, together with a new fraction in

which the numerator is of a lower degree than the deno-

minator : the former part can be immediately integrated by
Art. 3. The integration of the latter part in general comes
under the method of Partial Fractions.

35. Elementary Applications.—Before proceeding to

the general process of integration of rational fractions, we
propose to consider a few elementary examples, which will

lead up to, and indicate in what the general method really

consists.

"We commence with the form already considered in Art. 7 ;

in whi h, denoting by oi and a^ the roots of the denominator,

the eypression to be integrated may be represented by

(^ + q!K)dx

(x - ai)(a! - as)'

Assume

p + qx At A,
+

(x — oi) {x — ai) X — ai X - ai



40 Integration of Rational Fractions.

Multiplying by {x - a^ {x - ««) we get

p + qx = - {AiQi + AiQi) + {Ai + A2) X.

Hence, we get for the determination of Ai and A2 the

equations

p = - AiOi - AiUi, q = Ai + Ai',

whence we obtain

p+joi . _ p + qa2
.a.1 — , ./ij .

Consequently

dxr (p + qx)die _ p + qai r dx p + qa^ f dx

} {x— ai) {x — Ui) ai — Oi ] X — ai Oi — uj J a; —

(p + qai) log {x - oi) -{p + qai) log (« - 02)

In like manner

p + qx^ _ Ai Ai

{x' - Oi) {X' - 02) X^ - Oi «' - Oz'

where Ai and ^2 have the same values as above ; hence

r (p + qx') dx _p + qaiC dx p + qoi f dx

J
(«" - ai) («' - 02) Oi - atjx' - Oi ai - OzJ a;" - a^*

But each of the latter integrals is of one or other of the

fundamental forms (/) and (h) of Chapter I. ; hence the

proposed expression can be always integrated.

Again, let it be proposed to integrate an expression of

the form

{p + qx + riifi)dx

(x - oi) {x - 02) {x - as)'

We assume f

p + qx + rx^ _ Ai
_

A2 A3

{x — Uj) {x — 02) {x — tti) X — a\ X — Oi X — nj
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then clearing from fractions, and identifying both sides hy
equating the coefficients of a?, of x, and the part independent
of X, at both sides, we obtain three equations of the first

degree in Ai, Ai,As, which can be readily solved by ordinary

algebra ; thus determining the values of Ai, Ai, A, in terms
of the given constants.

By this means we get

dx

X - ns

f ( j» + g'iB + »"«') dx . C dx C dx .

] (X- oi) {x - ai) {x- as)~
'
J K - oi ']x- ai

= Ax log {x - oi) + ^2 log {x - Oa) + Ai log {x - a-i).

We shall illustrate these results by a few simple examples.

Examples.

flx-i)dx > 2, , > 3, / , f

I*
<^* 3>/,',/ .

-r-. :• » - log (« + 3 + 7 log (." - •)•

fdx I , » - I I
,

-7 . „ - log tau-ia;.
X* - 1 4 ° X + I 2

f dx

J a* + 5*2 + 4

fxdx I

- tan-'a: — ^ tan-' -

3 6 :

»= - I

4 »' + I

6.
[(Si^-ajifa: i, fx/-2\ ^ ,

(1^—^1

\^ + a^-to
- " 6log*+2log{«-2) + -log(».+ 3).

Here the denomiaator is equal to a; (a: — 2) (k + 3) ; and we have

• x^+ X — I _-^i -^2 -^3 .

a;(»- 2)(a; + 3) x x— 2 x + i'
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^euoe x^ \x-i= Ai{x'> + a; - 6) + AiX(x + 3) + -<is*(* - 2)

;

.•. the equations for determining Ai, At and A^ are

^1 + ^a + ^3 = I, Ai + zAt - 2A3 = I, 6^1 = I,

whence vre get

A^ =
l,

A,=\, A^^l.

8. f
(^^ + y^4^+0'^^. ^„,. ^. + log (:^ + . + 1).

J I'' + a; H- I

"We now proceed to the consideration of the general

method, and, as it is based on the decomposition of partial

fractions, we begin with the latter process.

36. Partial Fractions.—The method of deeompositioa

of a fraction into its partial fractions is usually given in

treatises on Algebra ; as, however, the process is intimately

connected with the integration of a large class of expressions,

a short space is devoted to its consideration here.

For brevity, we shall denote the fraction under con-

sideration by —T-r.

Let ai, tti, 03, . . . On denote the roots of (^{x) ; then

fix) = {x- ai){x - ai)(x - as) . . . {x- a„). (1)

There are four cases to be considered, according as we
have roots, (i) real and unequal; (2) real and equal; (3)

imaginary and unequal
; (4) imaginary and equal.

We proceed to discuss each class separately

37. Real and Unequal Roots.—In this case we may
assume

f{x) X - ai X - ai X - az X - an

where Ai, At, . ... An are independent of x. For, if the

equation be cleared from fractions by multiplying by ^(x)^

on equating the coefficients of like powers of x on both

sides we obtain n equations for the determination of the n
constants Ai, A^, . . . A„.
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Moreover, since these equations contain Ai, Ai, &o., only

in the first degree, they can always he solved : however, since-

the equations are often too complicated for ready solution^

the following method is usually more expeditious :

—

The question (2), when cleared from fractions, gives

/{x)=Ai{x-ai){a>-a3).. (sc-an) +Ai{x-ai){a;-as) .. {a!-a„}

+ &C. +A„{x-ai){x-ai) . . {x-aa.i) J

and since, by hypothesis, hoth sides of this equation are

identical for aU values of x, we may substitute oi for »
throughout; this gives

/(oi) = Ai{ai - ai){ai - 03) . . . (ui - a„),

In like manner, we have

A -li^ A -l^ A - /("") (,\

i>
(aj) (as) (a„)

Hence, when all the roots are unequal, we have

—7~\ "77—? • 77—

T

<" **C. + —77—L
,

^(x) <j>[(ii)x-ai ^ {02} X - Oi i){an)x~a„

Accordingly, in this case

The preceding investigation shows that to any root (a),

which is not a multiple roof, corresponds a single term in the^

integral, viz.

(4>
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one wMcli can always be found, whether the remaining roots

are known or not ; and whether they are real or imaginary.

38. Case where STunierator is of higher Degree
than Denominator.—It should also be observed that even

when the degree of a; in the numerator is greater than, or

equal to, that in the denominator, the partial fraction cor-

Tesponding to any root (a) in the denominator is still of the

form found above.

For let

^; =«.-#-,.

where Q and R denote the quotient and remainder, and let

A R . .

be the partial fraction of —p- corresponding to a single

root a ; then, by multiplying by 0(«) and substituting a in-

stead of cc, it is easily seen, as before, that we get

For, example, let it be proposed to integrate the ex-

pression

a^ - zse^ - 5X+ 6

Here the factors of the denominator are easily seen to be

CD - I, x+ 2, and a; - 3 ;

accordingly, we may assume

= 0^ + 00; + ^+ + +
a? - 23^ - 5x + 6 X - 1 X + 2 X - ^

To find a and /3, we equate the coefficients of «* and a? to

•zero, after clearing from fractions : this gives, immediately,

a = 2, and /3 = 9.

Again, since f{x)=a^- 2x^ - 50? + 6, we have

0'(a;) = 2,3? - AH! - 5-
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Accordingly, substituting 1,-2, and 3, successively for x
in the fraction

a'

^x' - 4a! - 5

we get

6 15' 10

and hence

a^
J

___i 32 243

ar" - 20;' - 5* + 6 6(i»-i) i5(a;+2) io(a!-3)''

«'cfo a;' „ . log(a!- i)
-T r 7 = - + «'+ 9a! 2_i^ -'

HD^ - 2iiir - 5x + o 3 6

^2 24 ^- — log(a! + 2)+— log(a:-3).

39. Case of SlTen Pofvers.—If the numerator and
denominator contain x in even povrers only, the process can

generally be simplified ; for, on substituting z for a;", the-

fraction becomes of the form

Accordingly, whenever the roots of (j>{z) are real and
unequal, the fraction can be decomposed into partial fractions,

and to any root (a) corresponds a fraction of the form

0'(«) z - a'

The corresponding term in the integral of

is obviously represented by

/(n) f dx

0'(a) ]x^-a
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This is of the form (/) or (A), according as a is a positive

or negative root.

The case of imaginary roots in ^(z) will be considered in

a subsequent part of the chapter.

It may be observed that the integrals treated of in Art. 3
are simple cases of the method of partial fractions discussed

in this Article.

EXAMPIES,

r
[
2x + 3)

J a;' + a' -
[2x + 3) dx

zx'

Here the factors of the denominator evidently are x,<t — l, and * + 2 ; we
accordingly assume

2a; + 3 A B=- + +
a' + »' - 2a; X X — I X + 2

Again, as ^ (i) = a;' + a' - 2a!, we have ip'{x) = 3*' + 2* - 2 ;

... fM = ^^ + 3

ip'{x) 33;' + 21 — 2

Hence, by (3) we have

^ =
-f, 5 =

f,
C=-l;23 6

consequently

t (2X + i)dx 3

,

5 , , » I , / >

Jfe^ =-^°S « +
f
^"S (^ - I) - 6 log (X + 2).

__i !_ /_[ L_V
(a;2 + a^){x^ + b^) a' - b^ \x'^ + 4' »» + a^}

'

fdx
Here

hence the value of the required integral is

I

K.-.){^-(i)4--(3t-
(xdx

(xi + «)(ii;« + b)'
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Substitute z for x'' and the transformed integral is

(I ds

2 (a + a) (a + 4)'

Consec^uently tlie value of the required integral ia

fZ-jjIpB
_ IWig

-4— '—-. ^M. 3a; +11 log (a; -2) -2 log (a; -I),
a:* — 3a; + 2

(x^ - i)dx I , , , • , , > 3

^a-7. + 6
- « -log(a:-i) + -log(a;-2) + l;log(^ + 3)-

*•
l.TTTKJTl)- » - log a; + log (.+ !)- -log (a: 4 2).

f (?a:(g' + 4'a^)

J a;''*i(a + Ja;»)

'

Let !!!» = -.
2

40. Multiple Real Roots.—Suppose ^(a;) has r roots

each equal to a, then the fraction can be written in the shape

In this case we may assume

fix) _ Ifi ,
M^

^
_irr_ P

{x - aY4>{x) {x - af ix-ay-^ '
" x-a VC*)'

where the last term arises from the remaining roots.

For, when the expression is cleared from fractions, it is

readily seen that, on equating the coefficients of like powers
at both sides, we have as many equations as there are

unknown quantities, and accordingly the assumption is a
legitimate one.
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In order to determine the coefficients, Mi, M^, &c. . • . Mr,
clear from fractions, and we get

/(«) = M4[x) +Mi{x - amx) + Mzix - ay^{x) + &o. , . . (6)

This gives, when o is substituted for x,

f{a)=M4{a),0TMi=-^y (7>

Next, differentiate with respect to x, and substitute a

instead of « in the resulting equation, and we get

/(a) = Jfif(a) + M4{a) ; (8)

which determines M^
By a second differentiation. Ma can be determined ; and

so on.

It can be readily seen, that the series of equationfl thus

arrived at may be written as follows

—

/(a) = M4{a),

f{a)=M4'{a) +l.M4{a),

f'{a) = M,xP"{a) + 2.M4'ia) + I.2.M4{a),

r{a) = M4"\a) + 3 . M4"{a] + 2.3. M4'{a) +1.2.3. ^4{«)y

/'(a) = M,-^\a) + ^.M4"'{a) + 3 .
4 . i!f3^"(a) + 2.3.^.M4'{a)

4 l.2.3.4.M4{a),

in which the law of formation is obvious, and the coefficients

can be obtained in succession.

The corresponding part of the integral of

\ f{x) dx

{x - ay-ijj {x)

evidently is

j|/Jog(«.-a)-^-^--^^^,-...-^^3^y^^—p,. (9)

If ^{x) have a second set of multiple roots, the cor-

responding terms in the integral can be obtained in like

manner.
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41. Imaginary Roots.—The results arrived at in

Axt. 37 apply to the case of imaginary, as well as to real

roots ; however, as the corresponding partial fractions appear

in this case nnder an imaginary form, it is desirable to show
that conjugate imaginaries give rise to groups in which the

coefficients are all real.

Suppose a + h ^/- i and a-h v - i to he a pair of con-

jugate roots in the equation ^{x) = o ; then the corresponding

quadratic factor is (\ ^ $,+><!)N^r^^^l) z
{x-ay + h^; which may be written in the form 111? + px + q.

We accordingly assume

^{x) = {a? +px + q)^{x),

and hence

f{x) Lx + M P_
^(x) x^+px + q Q'

P
where -y: represents the portion arising from the remaining

roots, and is the part arising from the roots
x^+px+ q

^

a ± b ^- I

.

Multiplying by ^(a;) we get

p
f[x) = {Lx + M)\p (x) + {x'+px + q)-^\P [x). (10)

If in this, - {px + q) be substituted for «", the last term
disappears ; and by repeating the same substitution in the

equation

fix) =xp{x) [Lx + M],

it ultimately reduces to a simple equation in « : on identify-

ing both sides of this equation, we can determine the values

of L and M.
42. In many cases we can determine the coefficients Z,M

more expeditiously, either by equating coefficients directly,

or else by determining the other partial fractions first, and
stibtracting their sum from the given fraction.

It wlU also be found that the determination of many
w
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integrals of this class can be much simplified by a trans-

forniation to a new variable, or by some other suitable

expedient.

Some elementary examples are added for the purpose

of illustration.

ExAUPLES.

xdx

hit')

Assume

fxdx

A Lx\ M
(i^x){i-\x^) l + x l+ic*

clearing from fractions, this becomes

x = A {i + x^ -i- {Zx + M)(t + x).

Equate the coefficients, and we get

Z + A=o, Z + M=i, A + M=o.
Hence

and accordingly

i=', M=-, A=--;
2 2 2'

r I I I +«
•+ -

:

Let

(i + a;)(i + a;'') 2 l + a; 2l+a;a'

fxdx I

,

I
I + a;'

I
i

I _ A Zx +M
_

I + it' I+X I —X + X'
'

consequently, A = -,'bj formula {3). Substituting and clearing from fractions

we have

3 = I - a + a' + 3 (ia; + ilf)(l + a)

;

hence, dividing by i + a;, we have

2 -x = 3{Zx + M).



Imaginary Boots. 51

Consequently

Idx _ If (fa 1 1' (2 - x)dx

= -log(i +a!) -|log(i -ii; + »») + -i=tan-M?^).

This can be got &om the last by changing the sign of a.

r dx
4- ir:^-

In this case we haye

i-x^ z\i -x^ I + icV

5. f4^. ^n.llog[ f-'^M +-^tan-'|g^l

Let !C* = 15, and the integral becomes

I f sdi

4J 2' - i"

6.
I<I (» - i)\x» + I)

Assume

A B Zx+M
(a!-l)Va!Hl) {x-lf x-l^ l + x^'

To find J and M, clear from fractions, and by Art. 41 the values of Z andM
are found by making x'' = - i in the following equation

:

x^ = (_Lx + 3f){x - ly.

This giyes immediately L = --, M=o.

Again, by Art. 40, we get immediately A = -.

To find £, make » = o in both sides of our identity, and we get

0=A-£ + M; .•.£ = A = -.

[4a]
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Finally

a' _li ^li t X ^

(a; - i)2(»^ + 1)
~ 2 (« - i/

"*"

2 »- I
~ I r+T'

'

——

;

= h - log (« - I) log (»' + I).

7 f
^^

J a:8 + a' - a* - a;3'

Here the denominator is easily seen to be i)?{x - l) (* + i)'(*' + 0> &'>'' t^"*

expression becomes

f dx

J l,x - i){x + if [x^ + i)'

Assume x = -, and tbe transformed expression is evidently
z

f a6^

J(j;-l)(s+i)2(««+i)'

The quotient is easily seen to be z - i ; and, by the method of Art. 38, we may
assume

26
_ A B Zi + M

Hence (Arts. 37, 40), we have

^ = 1= --r
Next, Z and Jf are found by mating s^ = — i, in the equation

ifi=(Zz + M){z-i){z+i)';

.: i=2{Zz + M){z + I) = 2 {Zz^ + (X + M)z + M],
which gives

2

4 4

In order to find the remaining coefficient G, we make z = o, when we get

o = -i-A + S-^ C+M; .-. C=|.
5
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hence we hare

z' I I Q a - I

(«-!)(« + 1)2(2'+
I)

^8(z-i) 4(3 + 1)'^ 8(2+ I) 4(«"+i)'

+ I log (a + i) - 5 log (a* + I) + - tan- 'a.004
Hence

dx I I * I , I -it' , «+ 1 I
r dx I I * I , I -it' , «+ 1 I

^ ,
I

8. /" ,- / ,, Am. - log—
J (»-i)2(a:+3) 2 °a; + 3 a; - I

43. Multiple Imaginary Roots.—To complete the

discussion of the decomposition of the fraction —j-x, suppose

the denominator ^{x) to contain r pairs of equal and imaginary
roots, i. e. let the denominator contain a factor of the form

{
{x - ay + b'}''; and suppose 0(«) =

(
(» - a)' + J')'' ^i{x)

In this case we assume

f{x) LiX + Ml Ltx + Mi
[{x-ay+V'Y,pi{x) [{x-aY + V']'- {(»-«)'' + 6'j'-'

LrX + Mr P
+ . .. + -, T-„

—- +
{x-af+b'' i,i{x)'

the remaining partial fractions heing obtained from the other

- roots.

There is no difSculty in seeing that we shall stiU have
as many equations as unknown quantities, Li, Mi, Li, M2, . .

.

when the coefficients of like powers of x are equated on both
sides.

To determine Li, Mi, Li, &c. ; let the factor {x - a)" + J*

be represented by X, and multiply up by X'', when we get

^ = lix + Mi+ {LiX + Mi)X + &c. + (LrX + Mr) X-1 + ~- (l l)
0iW «i(«) ^ '
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The coefficients Li and Mi axe determined as in Art. 41.

To find Li and M^ ; difEerentiate with respect to x, and sub-

stitute a + h«/ - I for X in the result, when it becomes

= Li + 2{xa - a){LiXo + Mi),

where Xo = a.+ h-/ - i.

Hence, equating real and imaginary parts, we get two
equations for the determination of Lt and M^. By a second

differentiation, L^ and M^ can be determined, and so on.

It is unnecessary to go into further detail, as sufficient has

been stated to show that the decomposition into partial frac-

tions is possible in all cases, when the roots of <^{x) = are

known.
The practical application is often simplified by transfor-

mation to a new variable.

44. The preceding investigation shows that the integra-

tion of rational fractions is in all cases reducible to that of

one or more fractions of the following forms:

dx dx {A + B)dx {Lx + M)dx
x-a' {x-af (x-af + b^' {{x-ay+bY

The methods of integrating the first three forms have been

given already. We proceed to show the mode of dealing

with the last.

45. In the first place it can be divided into two others,

L{x-a)dx {La + M)dx
{{x - of + Vy ^ {{x-ay^b'Y'

The integral of the first part is evidently

-L
z{r- \]\{x-af ^Vy

To determine the integral of the other part, we substitute

s for a; - a, and, omitting the constant coefficient, it becomes

(s^+jy
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Again

But we get by integration by parts

C
z^ds _ r zdz _ I f / i_

]{&^ + h'-Y~r'{z^ + bY~ 2{r-i)]^ \{z^ + ¥)

(f + by-''2{r-i){z^ + b°-)'^'^ 2(r-i).

Substituting in the preceding, we obtain

f dz 2r-3 r dz a , .

]{s' + b'Y
~ 2{r-i)b'}{z' + bY-'

"*"

2{r-i)b' (f + b^y-'' ^^^'

This formula reduces the integral to another of the same
shape, in which the exponent r is replaced by r - i . By
successive repetitions of this formula the integral can be re-

dz
duced to depend on that of 7-;—r-r.^

(s" + b")

The preceding is a case of the method of integration by
successive reduction, referred to in Art. 19. Other examples
of this method will be found in the next Chapter.

The preceding integral can often be found more expedi-

tiously by the following transformation :—Substitute 6 tan

dz
for z, and the expression -^—j^ becomes, obviously,

^i\°°^"" OdB.

The discussion of this class of integrals will be found in

the next Chapter.

46. We shall next return to the integration of '^
,

0(« )

which has been already considered in Art. 39 in the case
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where the roots of ^(s) are real. To a pair of imaginary

roots, a + h<y- i, corresponds a partial fraction of the form

(«' - af + 6*' °^ «* - 2«a;'Tc^'

where & = o? -vV.

In order to integrate this, we assume a = c cos 2^, when
the fraction becomes

{Ax'' + B) dx

a;* - 20^ c coazcj) + c"

The quadratic factors of the denominator are easily seen

to he

ar" - ixv^c cos + c, and x' + 2xvc cos + c.

Accordingly we assume

Ax' + B Lx + M L'x + M'
• +

X* - 2111^ e cos 2^ + c^ a;' - 22! y^c cos + c a!' + 2a;v^ccos0+c'

hence it can he seen without difficulty that

4 CS cos <jt 20

and after a few easy transformations, we find

f {Ax' + B) dx _ Ac- B
^ f

x'- zxa/c cos (j> + e

J
«*-2»^ccos 20 + c"

~
8 COS0 ci °^

\^a? + 2* v/c"cos + c,

4 sin 0^

dx

tan-'f£fA/c^m0

47. Integration of r— . , =—

.

^' *
(a!-fl)'»(a!- J)"

This expression can be easily transformed into a shape
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;

rr-

.

67

"whlcli is immediately integrate, by the following sutstitu-

tion :

—

Assume » - a = (» - 6) s ; then

a-h% (a- b)z , a - b , (a-b)dz
4C = ; .•.x-a = - '—, x-b = , ax = -, h—

;

I -s I - a I -s (i -s)''

and the expression transforms into

(i - z)'"*^'dz

{a - 6)'»+»-ia»*

Expand the numerator by the Binomial Theorem, and the

integral can be immediately obtained. (Compare Art. 4.)

For example, take the integral

dx

{x - aY{x- by

Here the transformed expression is

•(i -zYdz

or
J{«-

4<,j'

J^] (J
-
f
+ 3 -^)^^ =(^ j^- 3^ + 3 log. +

Jj.

Substituting for z, the integral can be expressed in

terms of x. .

48. Integration of 7
{a + cx'Y

where m and n are integers.

Let a + ca;" = 2, and the expression becomes

(s - «)"*&

a form which is immediately integrable by aid of the Bino-
mial Theorem.
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It is evident that the expression is made integrable by the
same transformation when n is either a fraotional or a nega-
tive index.

It may be also observed that the more general expression

-.—
.^^

can be integrated by the same transformation, where

f[3?) denotes an integral algebraio function of a;'.

x^dx

"
J (a + ex'^y

f _
J(i +

x^dx

x'}
.2\3-

Examples.
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a;" - I

where k is any integer

;

2kTr
.'. a + a^ = 2 COS

n

Hence, if be substituted for— , the preceding fraction.

becomes

2 a; cos - I

n »' - 2x cos + i'

The integral of this, by Axt. 7, is

COS0, „ ,. 2sin0. Vaj-cosflX
log (I -2XQ0sB + x') tan~M —-v—?>— .

» ° ' n V sin y

There are two cases to be considered, according, as n is.

even or odd.

(i). Let n= zr: in this case the equation »" - i = o has-

two real roots, viz., + i and - i ; and it is easily seen that

[da I , CD- I I kw^
,

At ,,= — log h — S cos — log f I - 2x cos— + »')

J as"" -I zr "x+i 2r r '° '' " r

,
I
m -003 — \

-issin^tan- —^ , (13)

\ ^^"^ /
where the summation represented by S extends to all integer

values of k from i to r - i.

(2). Let w = 2r + I, we obtain

f dx log(a!-i) I ^ zkir , ( zkir
-^rr. = -+ SCOS log I-2a!C0S +X'

\x^*^-i zr+i zr+i 2r+i °\ 2r+i

2kT
,7. /«-cos

2 .„ . 2*77 , _, / zr + I

^'^^z-;t^^-H- ^hr-^ ,
(i4>

zr + I zr + 1 I . 2^77
sm

zr+ 1
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where the summation represented by S extends to all integer

values of k from i up to r.

50. Integration of , 'wbere m is less than n + 1.

As before, let a be a root, and the corresponding partial

iraction is ——-. r or —. r ; hence the partial fraction
Wa""' {^-a) n{^ - a)

arising from the conjugate roots, a and a"^ is

X - a'^J n «" - (g + g"') X + l

2 xcosmO - cos(m - 1)6

n aj" - 2® cos 4- I '

where is of the same form as before.

The corresponding term in the proposed integral is easily

seen, by Art. 7, to be

-|cos»«61og(a!'-2a!cos0+ i) -zsiumfltan"'—=~fl~
• ('S)

By giving to k all values from i to— i, when n is even, and

ft T

from I to when n is odd, the integral required can be

written down as in the preceding Article.
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EXAMPIES.

. J «» + 6a; + 8 2 *=
V» + 4/

j8 _ ^ _ ^
- >. 2 log (a; -2) + log (» + !).

r(^ + Ba:2)(?a: ^ J»-^i,
, , ,,

3-
J <« + te')

- " -log:i; + ^^^log(«+ia;^).

f
g^'^Jg I a; - I v'l , / a; \

"^ +' 4y^2 a;2-a>/2 + l 2^/2 \i-icV

f (2g-5)i?a; 7 ,
"

, f^ + ^\

J (»+ 3)(»+ I)"" " 2 (a; + I) + 7 ^^ l^n j
•

f <?« I I /a* \

J a; (« + ^2)2" " 28 (» +~ Ja;2)
"*"

J^ ^®
V» + i^ j

'

8 f ^ I . / g» \ I

J a: (a + Sa?')" " ««2 °^ \a + Ja"j
"''

««(a + ix")'

f
(?a!

J a; (» + bx"y'

Let a + ia?" = x^z, and the transformed expression is — -^ — .

-7— . Am. -log(a;'+ I)— log(3;+ i) + -tan-'a;.
x' + afi + x + I 4 2°^ '2

11. -7 ^ 5 . „ — log^—-'- + — tan-'a;--: -.

i!l^ + ^+SX^ + 4X + 4 "
2J

° X^+I 2S S(«+2)

dx
12. Apply the method of Art. 47 to the integration of -

(I - x^y'

The transformed expression is - ^—^-^

—

Ix^dx ^^' , I x(i A- x^) I , I + a;

(T^3- -
^ ^™- ^ -(73^. -

i6
log j^^.
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14- ProTethat

Jdx
«»(! -x]

Examples.

into-
I

^transforms
r»

if we make « = -

1+ 2

Idx I . X 1
-. ; r ;. Attl. ; log Bin r log
8inar(« + * cosk) a + b i a-o

X
cos-

2

• log (a + J COS X).
a2 - 4«

Multiply by sin x, substitute » for cos x, and the integral becomes

r -du
J (I -m") (« + *«)

. f Aj . I , . X , XI,,
10. I

—
:

: . Ans. - log sin— log cos - + - logl? + i cosit).
J3Bina; + sm2a 5 2 ° 25°" '

f
{i-a?)dx '/j /j+icn I fx* + x^+i\

Let «' = -, &o.
z

18. Prove that

dx I (2^-1)71— 2 cos —
2n zn

[ik- i)jr
,

^ '— tan-' <

/ (2*-l)w ,\
( I - 2a! cos 5 '— + a;« I

\ zn }

+ - 2 sin
n 2n

(2A- i)t'

(zk- i)t

where ^ extends through all integer values from i to n, inclusive.

dx log(r+a:) i ^ (2^- i)ir

19'
I,- -I- a;""'-! zn

l+x) I ^ (2A-i)jr, / (2i-i)ir ,\ I.

2C0S^ ^logl I-2iCC0si '-+il!'l .:

+ I 2« + I 2» + I \ 2» + I / "

(2j — l) IT
"

2 . (zi — l)ir .

+ 2 sin
* '— tan'i <

2» + 1 2» + I (2A - I)

2»+ I

There i assumes all integer values from i to « inclusive.
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CHAPTBE III.

INTEGRATION BY SUCCESSIVE EEDUCTION.

51. Cases in which sin'" 6 cos" 6 dO is immediately In-
tegrahle.—We shall commence this Chapter* with the dis-

cussion of the integral

j Bin." e cos" Odd;

to which form it will he seen that a numher of other expres-

sions are readily reduoihle.

In the first place it is easily seen that whenever eitherm or

n is an odd positive integer the expression sin'"0 ooa"0d9 can

be immediately integrated.

For, if w = 2r + i, the integral hecomes

Jsia" d cos "-^'dde, or, J sin"- 6 (cos'' 9yd{Bia 6).

If we assume x - sin B, the integral transforms into

ix"'{i -xYdx; (i)

and as, hy hypothesis, ^ is a positive integer, (i - x'Y can
be expanded by the Binomial Theorem in a finite number of

terms, each of which can be integrated separately. In like

manner, if the index of sin Q be an odd integer, we assume
X = cos Q, &c.

A few examples are added for the purpose of making the

student familiar with this principle.

* It may be observed that a large number of the integrals discussed in this

Chapter do not require the method of Successive Eeduction: however, sincu

other integrals of the same form require this method, it was not considered

advisable to separate the discussion into distinct Chapters.
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Examples.

Isin'9<f9.

I-

J cos^e

(v/ sinflcos'flifff.

psin'flrffl

JV cos 9

cos'9<?9.

I sin' 9 cos' 9 rf9.

f C03'9rf9

J sin! 9

Am.
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[sin'Ode
Take, for example,

cos°0

Let X = tan 6, and we get

tan'O tan'9
x'{i +x')dx,

Next, to find

J'

or-
3

dd

)sin0cos*0'

Making the same substitution, we obtain

'(i + x'^Ydce

I'- X

Hence, the value of the proposed integral is

tan^fl
+ tan'0 + log (tanfl).

Again, to find
sin^fl cos^fl'

Here the transformed expression is ^—-j-^— , and ac-

cordingly the value of the proposed integral is

-tan^e- ^

3 tan^O"

In many cases it is more convenient to assume x = cot 0.

Por example, to find -t-tt;.^ Jsm*0

jfl

Since c^fcotO) = - -^-t?,, if cot = x, the transformed
^ ' sm'^O

integral is

-
I

(i + «')(&!, or - cot .

The following examples are added for illustration •,

—

[5]
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Examples.

•sin'arffl
Ans.

tan<9

J cos'fl'

de

I sin B cos' fl

1
^'.TiiBdB

cos^a

f
«9

J sin* 9 cos*

h
de

siniflcos'fl

2 tan' 9 tan»9
„ tan 9+ + .

3 5

tan'

9

+ log (tan e).

» "tan" 9.

- 8 cot 29 cot' 29.

3

^ ,
/ tan29\

,, 2 tan* 9 I I +
J.

When neither of the preceding methods is applicable, the

integration of the expression sin^fl ooa"6dd can be obtained

only by aid of successive reduction.

We proceed to establish the formulae of reduction suitable

to this case.

53. Formulae of Reduction for sin" cos" e^d.

sin^e COS" Odd = [cos""' 9 sin"* 9^^ (sin 0)

:

consequently, if we assume

M = cos""' 6, V
sin™" d

m+ I
'

the formula for integration by parts (Art. 21) gives

r . , „ ,„ cos"-' 6 sin*"^' n- I

sm^d cos"0 dd = +
m+ I m + i

Bin"'+'ecos"-»0cf0. (2)
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In like manner, if the integral te written in the form

- sin'""'^ cos" 0(^ (cos Q),

we ohtain

( sin^e cos"0cf0=??^^
f
sln'-^e cos««0^0 -

^^^""'^"°«""^
. (3)

J w+ 1

J

«+

1

It may he ohserved that this latter formtda can be de-

rived from (2) hy suhstituting— for 0, and interchanging

the letters m and n in it.

54. Case of one Positive and one Sfegative Index.
—The restdts in (2) and (3) hold whether »« or w be positive

or negative ; accordingly, let one of them be negative (m sup-

pose), and on changing n into - n, formula (3) becomes

f sin" 9 ,n _ Bin"-' fl ot - i f sin"-' 9 „
f A^

J ^3^ "^^"{n-i) cos«-'fl n-i] Gos'^Q ' ^ >

in which m and n are supposed to have positive* signs.

sin" Q
By this formula the integral of—z-ndd is made to de-^ ^

cos" d

pend on another in which the indices of sin 9 and cos 9 are

each diminished by two. The same method is applicable to

the new integral, and so on.

If m be an odd integer, the expression is integrahle im-
mediately by Art. 51. If w be even, and n even and greater

than m, the method of Art. 5 2 is applicable ; ii m = n, the

expression becomes / tan^O d9, which will be treated subse-

quently ; ii n <m, the integral reduces to that of sin""" 9 d9.

Again, if n be odd, and > m, the integral reduces to
cos"-"e

'

* The formulae of reduction employed in practice are indicated by the capital

letters A, B, &c. ; and in them the indices m and n are supposed to have always
positive signs. By this means the formulae will be more easily apprehended

and applied by the student.

[5 a]
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and if n < m, it reduces to t,
— . The mode of find-

J cos 6>

ing these latter integrals wiU be considered subsequently.

Again, if the index of sin be negative, we get, by
changing the sign of ot in (2),

[• cos"g „ cos"-'e w-i f cos"-'e

Jsin^ei (»M-i)sin'»-'6l"^^JsS^ ^ '

"We shall next consider the case where the indices are

both positive.

55. Indices both Positive.—If sin^fl (i - cos'ft) be
written instead of sin"" d in formula (2), it becomes

I

n'- I f .

si
»j+ I

J

• ™n „« 7a cos»-'0sin"'+'0
sin'"0 cos" Odd =

sin^e (cos'-^e - cos" 6) dO =

m + 1

cos"-' sin™" d

m + I

fl — 1 C 7t — \ c

+ sin^fl cos"^0rf0 sin^e oos"edd:m+ I

J

m+ 1

}

hence, transposing the latter integral to the other side, and

dividing by , we get

f sin^e cos«e dO =
"°^""'^ '"''"'

- + ??—? f sin^ecos"-^^^^ (C)
J m+n OT+wJ ^ '

In like manner, from (3), we get

f sin-" e cos" ede = ^^—^
f
sin-™-^ e cos"Odd-

«^"'""'^<'°s""fl
_

J m + nj m + n ^ '

By aid of these formulae the integral of sin™ cos" Odd is

made to depend on another in which the index of either

sin 6, or of cos 9, is reduced by two. By successive appU-
cation of these formulae the complete integral can always be
foui^d when the indices are integers.
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56. Formulae of Reduction for sin." B dO and cos"

These integrals are evidently cases of the general formulse

(C) and (2)) ; however, they are so frequently employed that

we give the formulse of reduction separately in their case,

f „n ,n sin cos"-' « - I f „ , n ,„ , .

cos" ed9 = + cos"-' 6 dd. (4)

f • ^ n 7/1 COS Q sin"-' «-if-„,/i,/, ,\sm" ddB = + sm"-'' Q dO. (5)
J n n J

The former gives, when n is even,

f cos" 0rf0 =— fcos"-' e + ^^-=-i cos'-^ Q
J n \ n - 2

-.
^'^ -';;"- 3) cos"-»e+&c.

n {n - 2){n — Of) . . . 2 ' ^ '

A similar expression is readily ohtained for the latter

integral.

Examples,

f . , , sinfl cosfl/ . . 3\ ?
I. ein*9(?fl. Ans. (siii29 + -l + |8.

f. . sin e cose/sin^9 sin-fl i\ 9

2 V 3 12 %j i6

f . sinfl oos'8/ „ 5\ S / . \
3. C03«fl(?9. ,, T lcos2fl + ij + -^lsin8oosfl+eJ.

57. Indices botli Negative.—It remains to consider

the case where the indices of sin Q and cos B are both
negative.

Writing - m and - n instead of m and n, ia formula (C),

it becomes

r dB _ -i_ n + I (• dB

j sin^O cos"0
~ {m + n) qos'^'B sin^-'fl

''' m + n] sin"0 CO8""0
'
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m + n
or, transposing and multiplying by

n + I

dQ I m+n dO

sin'"0co8"O"sin^e cos"^=0 (» + I ) cos"'-'0 sin"'-'0 w + i J i

Again, if we substitute n for » + 2 in this, it becomes

r dd ^ I

Jsin'"0cos"0
~

{n - i)cos"-'0sin'»-'0

m + n- 2{ dO

-1 Jsin"'0cos»-^0" ^ '

Making alike transformation* in formula (D), it becomes

[ dO - I

I Bin'"flcos"0 {m- 1) 8in™-'0 oos"-'0

m + n- 2
+ m

•" w
sia'»-'6/ cos»0'

In eacb of these, one of the indices is reduced by two

degrees, and consequently, by successive applications of the

formulae, the integrals are reducible ultimately to those of

dO dO
one or other of the forms —r. or -:—7, : these have been

cos sm a

already integrated in Art. 17.

The formulae of reduction for -:

—

^ and 7: are so
sm"0 cos"0

important that they are added independently, a& follows :—

* It may be observed that formulae {B), (i)), and (F) can be immediately
obtained irom {A), (C), and {£), by interchanging the letters m and n, and

substituting ^ instead of 8. For, in this case, sin 9, cos d, and dS, transform

into cos ip, sin (j), and — d^ji, respectively.
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.

7 1

f d9 sing n -z f d9 . .

Jcos"0 ~
[n - i) co8"-'0

"*"

w - I Jcos"-*0'
^'^'

f dQ -cos6> n-2 f dd - .

Jsiii»e~ (w- i)siii"-'0 "^w - Jsin'-'fl'
^'

It may be here observed that, since sin'0 + cos^fl = i, we
have immediately

f dQ _ [ dQ f dO
_

,

J sin™© cos"0
~

J siii"'-''0 cos"0
"*"

J sin^fl coa'^'9

'

^^'

and a similar process is applicable to the latter integrals.

This method is often useful in elementary cases.

Examples.

fde rsine<?9 r ds i , . fl

-; ^ = I h I
-:— = 1- log tan -.

sinffcos'fl J cos'fl Jsmfl cos 8 ° 2

IdB _ tsmSdi r de

sin 9 cos* 9
~

J oos<8 j3inecos2 9'

and is accordingly immediately integrated by the last.

f de ^ cos9 I
, ^9

3- I ^-t;. .4«*- :—rx + - log tan-.

( de I cos9 3 9
*

JsinSecos»9' ," T^~I^\^e'^i^ i

58. Application of Method of Differentiation.—
The formulae of reduction given in the preceding Articles

can also be readily arrived at by direct differentiation.

Thus, for example, we have

d fsm"'B\ »2sia'"-'0 n sin"'"0
+

d9\oos"ej cos"-'0 cos""0 '

and, consequently.

r sin^^'fl _ I sin^e m fsin'""'

I cos""0 ~n cos"e ~^Jcos''-'e'

This result is easily identified with formula (A).
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n,

(siu^fl cos"0) = m sin^-'fl cos"*'0 - n sin^+'fl co8""'0.

Again,

dO

If we substitute for cos"*'0 its equivalent cos""'0 ( i - sin-fl),

we get

-7^ (sin*"© cos''0) = m sin"^'6 cos''-'e - (w + w) sin^+'fl cos"-'0

;

hence we get

fsin'»"0 eos"-'0rf0 = -
^'""^""'"^

+ -^
f
sin-'fl cos«-'0(/9,

J »z + w m + nj

a result easily identified with (D).

The other formulae of reduction can be readily obtained

in like manner.
dO

59, Integration otian"6d0 and -—^.
tan (/

These integrals may be regarded as cases of the preceding

:

they can, however, be arrived at in a simpler manner, as

follows :

—

Since tan''^ = sec'0 - i, we have

[
tan"6l d9 =

\
tan^-'O {sec'd - 1) d9 = { tan«-'0 d (tan 6)

-
f
tan'^'O d9 = ^-^^ - [tan"-^0 d9. (10)

By aid of this formula we have, at once,

tan^e d9 = + &o. (11)
J n- 1 w-3 n-

5

(i.) If » = 2r + I, the last term is easily seen to be

(- i)'-"log(cose).

(2.) If w = zr, the two last terms may be represented

by (- Ir' (tan 0-0).
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In a similar manner we liave

f dd (sec'edB f dd - i C dd ,

J tan^e
"

J "tan'-e J tan«-^9
~ {n- i) tan«-'0

J
tan"-'0"

^^^'

tan'fl
tan^fl de. Ans. tan 6 + 9.

3

Examples.

'•
i

r , cot^a
4. I cot*9 de. „ + cot fl + e.

to. Trigonometrical Transformations.—Many ele-

mentary integrations are immediately reducitle to one or

other of the preceding formulse of reduction by aid of the

transformations given in Art. 26. For example, if we
Cfj^ doc

assume x = a tan 0, the expression ^ transforms into
(a' + x^Y

fiin'"0 cos"~'""''0 rffl (neglecting a constant multiplier).

In like manner, the substitution of a sin Q for x trans-

„ ,, . ^dx . , a"""*' Bin"' 6 u9 , .„
terms the expression mto 7: : and, if

(a'-x')^ cos»-'0
'

„ ,, . x'^dx . , . , cos"-'"--0rf9
« = fl sec a, the expression transforms into -. =

—

(a^-a')- sm"-'e

(neglecting the constant multiplier).

A similar transformation may he applied in other cases.

For example, to find the integral of tt-, ;

(zax - x'p

let X = za sin? 6, then dx = ^a sin d cos 9 dO,

and the transformed integral is

z^^^a" S sin'" ddd:

accordingly the formula of reduction is the same as that in (5)

;
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!Exa.ii:fles.

^^. y4«j!. ^ Rin-lfl;
f "^ »* J ' • 3 • 1 arv^ I - k' , .,

J (i - a")' 2.4 8 ^^ '

f
dx I I - .\/i - ifi a/'i - ifi

f dx

f
i^"^^ -«' 3/ . ,«\

- I(i^. .. -(.».-.')^(f.f).3«Wg"I.

The integrals considered in this Article admit also of
a more direct treatment. We shall commence with the:-

following :

—

61. Cases in wbich Is Immediately inte-
grable. (a + ex')'

We have seen, in Art. 48, that the proposed expression is

integrahle immediately when m is an odd positive integer.

Again, when m is an even integer, if we assume a + cx-

= »' s^, the transformed expresssion is

- (g' - c) ' rh

This is immediately integrahle when n -m - 1 is even

and positive, i.e. when m is either an even negative integer^

or an even positive integer, less than n - i.

-n 1
f^^

1
(Z^ - C)" dz

lor example, ; becomes - -^

—

„., , and

accordingly is always integrahle hy this transformation,,

since w is an odd integer, by hypothesis.
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EXAHFLES.

!dx
/I

"
i

ct'
)

(a + ex'f
"*'

«' (» + ""^^^ I 3 (» + «")
)

'

!

x^dx - (2a2 + 3*2)

f dx

The differentials considered in this Article are cases of a.

more general class called biaomial differentials.

62. Binomial Hifferentials.—Expressions of the form

»"(« + hod^ydx,

in which m, n, p denote any numbers, positive, negative, or
fractional, are called Binomial Differentials.

Such expressions can be immediately integrated in two
oases, which we proceed to determine by transformations

analogous to those adopted in the preceding Article :

—

(i). Let a + baf" = z; then x =
(

"^—
j,

and dx = ^^(^-^y ch;

fn + l _,

lience »"(« + hyS^^dx = ^-^Ti .

nb"

Consequently, whenever is a positive integer, the

transformed expression is immediately integrable after ex-

pansion by the Binomial Theorem.
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(2). Again, if we substitute - for x, the differential

becomes

This is immediately integrable, as in the preceding

case, whenever is a positive integer ; i. e. when

h » is a negative integer. In this latter case the inte-
11

gration is effected by the substitution of z for aar" + I.

Examples

J (I + «')i

af'dx , 2 (l + a:S)iW - 2)

dx X

fdx
x-[i + xi)i

dx (I + a:*)*

4-

-(1 + a;*)i a;

fdx 2a*

!(l + a:')5'
" (!+«')»

When neither of the preceding processes is applicable, the

expression, Mp be a fractional index, is, in general, incapable

of integration in a finite number of terms. Before proceed-

ing with this investigation we shall discuss a few simple

forms of integration by reduction, involving transcendental

functions.

63. Redaction of
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Again, to find —^ dx.
J X

Assuming u = e'"", v = -. tuti) ^''^^ integrating by-
{iff — i. ] ss

parts, we have

[«'«* dx _ -e""' m Cf^
J »" ~ {n- i)»»^

"*"«-
ij «"-'

^^'^''

By means of tHs the integral is reduced to depend on

t e^'^dx

J X

The value of this integral cannot be obtained in a finite

form; it however may be exhibited in the shape of an
infinite series ; for, expanding e^'^ and integrating each term
separately, we have

{e'^dx . mx m^a? rr^x^ „ , .

=loga; + ^- + -+
5 + &C. (15).

The integral of a^af^dx is immediately reducible to the
preceding, since a* = e^ios". Consequently, by the substitu-

tion of log a for m in (13) and (14), we obtain the formulse-

of reduction for

«'«" dx and — dx.
J Ja;"

In like manner we have immediately

Je-*a;"(&= - e-'a;" + w Je^a;"-'(f^. (i6>

64. Redaction of J
«*" (log «)"(&.

Let y - log X, and the integral reduces to that discussed,

in the last Article.

The formula of reduction is

«"» (log x)" dx = ^—^—!-
a'" (log x)''-'dx. ( 1 7),
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EXAMFLBS.fgax I 5 *52 ^2ll
x^e"dx. Am. — } a;' - ^ « + —'— a; - i-1-—1— j

.

^'
J

*i » ~3(a^ 57 + 2ri+iT7TTJ^~•

65. Redaction of Iof* cos aajrfa;.

Here «" cos fla-rfa; = a;""' sin aajrfa;

:

J o aj

f „ , . , «"-' cos ra « - 1 r „ , ,
a""' sin axdx = + »""' cos aar aa',

J a a ]

hence

•f „ , a;""' (aa? sin aa! + M cos oa;) n[n~i)t ,

\af^<iOsaxdx = ^^ ;
'• ^^—--Ma;"-''cosfla!da;.

J a^ or ]

The formula of reduction for «" sin axdx can be obtained

in like manner.
Again, if we substitute y for sin"' a;, the integral

/ (sin"'a;)"rfa!

iransforfas into

\y^ Qos ydy,

and accordingly its value can be found by the preceding
iormula.

Examples.

1. I a;' cos xdx. Ans. a?smx + jx' cos a; - 3 . 2 . a; sin a: - 3 . 2 . i . cos i.

2. I i!;*sina:(&.

-Ans. - it* cos a; + 4;!;' sin a: + 4 . 3 . a:' cob a; - 4 . 3 . 2 . « sin a: - 4 . 3 , 2 . i . cos a:.
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66. Redaction of Jc"^ cosVrfar.

Integrating by parts, we get

f „, - , cos"a;e''* nt , . ,
e'^" oos"a! ax = + - e"^' cos""'* sm xdx.

J a a]

Again,

e''*cos""'«sina;(fo

gai (3Qg«-i-j, gin a;

a

g(ji
cos""'ir sin .r (w - i

)

- e""' [cos" a; - (w - i) cos"~''a;sin'«)rfa:

n f--6gM co^'^'^xdx— \e'^ cos" xdx ;

a a

substituting, and solving for Je"'' cos"a;rfa!, we get

e°^ cos""'a; (« cos a; + « sin x)
e"" cos"xdx =

^ e'^eos^-Vrfe. (i8)
n (n - I

)

a'

The form of reduction for e'"' sin"a;£& can be obtained in

like manner.

67. Reduction of j GOB'^xsinnxdx.

Integrating by parts, we get

f . , cos^a; cos nx m f
cost's! sin nxdx = eos"^'* cos nx sin. xdx :

J n nJ

replacing cos«a; sin x by sin MiBCOS « - sin (w - i) x, after one
or two simple transformations we get

„ . , cos'"a; cos ««
cos^aJsinw^cKB = -

+
m

m + n

m
cos'""'a; sin(w - i) xdx. (19)

The mode of reduction for eos"!!! cos nxdx, sin""* cos nxdx,

and sin"** sin nxdx can be easily found in like manner.
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Examples.

Ifi"" siri X Sc"""

e" Bin'xdx. Ans. :r-(as\nx— 2 ao&x) + -

,

=-

4 + «^ « (4 t a")

f.
. , eoi^x cos 4a; cos x . cos xx cos 2x

cos' a sin ^xax. ,, ;

—

6 12 24

e-' cos'xdx. „ (cos' a; - sin 2x + 2).

5

68. Reduction by DifTerentlation.—We shall now
Tetum to the discussion of the integrals already considered in

Arts. 60 and 61 ; and commence with the reduction of the

expression -. ^rr. This, as well as other formulae of re-^
(a + cx'p

duction of the same type, is best investigated by the aid of a
previous differentiation.

Thus we have

d i ) ex^— a;'"-'(fl + ca;')i = (m - i)a!'»-' (a + ca?)i + -.

«« ( ) (« + CX^)<>:dx

(m - i) a;*""' {a + cx^) + ex'"

{a + cx')i

(m - i) ax'"'^ mcx™^= '-
1

•

{a + cx^)^ (a + ca;'*)*'

hence, transposing and integrating, we obtain

x'^dx x"^^(a + cx')i (m - i)a x^-'^dx

[a + cx'')^ mc mc J (a + ca?)i
(20)

By this formula the integral is reduced to one or more
dimensions ; and by repetition of the same process the ex-

pression can be always integrated when m is a positive

integer.

The formula (20) evidently holds whether m be positive
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81

or negative ; accordingly, if we change m into - (m - 2), we
obtain, after transposing and dividing,

da;f dx (a + ea;')* (m - 2) c

J af^{a + cx'Y
~ {m-i) ax'^'- {m- i) a,

69. more generally, fve bave

Hence

a;^' {a + cx')i'
. (21)

— [x'^^ {a + ca;')") = (w - i ) a!™-' (0 + ca;'')" + 2wca!'" (a + ca;')""'

= (a + ca;")"-'
{
(m - i ) a a;"-'' + (m + 2« - i ) ca;'" j

.

a!*"-' (a + ex')"
x"' {a + ca^y-^dx =

' (m- i)a

{m + 211— i)c_

{m+ 2n- 1)0

x'"-'^{a + cx''Y"'dx. (22)

Consequently, when m is positive the integral can be

reduced to one lower by two degrees. If m be negative,

the formula can be transformed as in the preceding Article,

and the integration reduced two degrees.

We next proceed to consider the case where n is negative.

70. Redaction of
SB^dx

{a + oxY'

m and n being both positive.

„ f x'"dx
Jiere 7 57- '

}{a + ex')"

xdx

{a + cx^'

Let x'^'^ = u, and
f xdx

J (a + cxy
'^ ^'

or

and we get

r x'"dx

]{a + cx')"

2 (« - i)c(a + ca;'')""'

= «,

2 (m- i)c (a f caj")"-'
"^
2(w - i)cj {a + cxy-'' ^^^'
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By successive applications of thisfonn the integral admits
of being reduced to another of a simpler shape. We are not
able, however, to find the complete integral by this formula,

unless when n is either an integer, or is of the form -, where

r is an integer.

r s^ diX
71. Redaction of -. = ^..

J (a+ 20x + cx^)*

By differentiation, we have

— [x'"-\a + 2lx + ca?)^ = {m- i)x'^' (a + 2bx + c^')i

»"""' (J + cx) {m- 1) ax"''^ + (zOT - I ) J*""' + mea;"

[a + 2hx+ cx'')i {a+ 2bx + cx'^)i
'

,
r x"'dx x'^^(a+ 2bx + cx')i

hence -. 7 rrr = =^ -
\ [a + 20X + cx^)i mc

{2m-i)bC x^^'^dx (m- i)ar af^'^dx

mo ]{a+ 2bx + cx'^)i mc ] {a + 2bx + cai^)^' ^

This furnishes the formula of reduction for this case : by
successive applications of it the integral depends ultimately
on those of

xdx , dx
and

{a + zbx + c*")* {a-¥ 2bx+ cx'ji'

These have been determined already in Arts. 9 and 12.

Again, the integral of -—. —- can be reduteed to* ^ x'"{a+2bx + cx')i

the preceding form by making x = -.
z

72. Tbe more general integral

r x^'dx

J (a + zbx + ex')"

admits of being treated in lilie manner.
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J (a + 20X + car)"

"For if a+ zhx + ci? be represented by T, we have, by
difierentiation,

^ /^'"""'N _ H- 0«""' _ 2 (w - i)!?""-' (6 + ca)

(»» - i) a!*^" (a + 2 to + ca;') - 2 (w - i) a?*"'' (5 + ca;)

_(m-\) aa?"-'^ 2l{m - n) «*""' {m-m - i)e!>f^

jfn 2^ "jln
"

Hence, we get the formula of reduction

rss^dx _ -x'"-^ 2{m-n)b (xF-^dsc

J ~T" " {2n-m-i)cT'^' "^
(2w-m-i)cJ I"

{m - i)a ^ai^'^dx
."'"

{211- m- i)c] r» ^^^'

By aid of this, the integral of , -when ?» is a positive

integer, is made to depend on those of -=^ and -=j. Again,

it is easily seen that the integral of -^ is reduced to that of

dx

ra;rfa! i (• (5 + a

J
2^

=
-J fi

cx)dx h

c

dx

h \ dx- I oiax

2(«-i)cr«-' cj T"" ^ '

[6 a]
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73. Reduction of ; ;

J (a + 20a; + cx^^Y'

In order to reduce ^, we have

d fh + cx\ _ c 2W (6 + cxY

dx { T" J ~T" T^'

Hence . ^.

c 2n{ae-b^) 2«e 2n{ae-¥) (2w-i)e

rfit; 5 + ca; (2« - i)c
f
</«5 + ca; (2« - 1)0 Ida! . ,

2«(ac-6^)r»
"^

2n(oc - ¥) J T»" ^^ "^^

UiSd

By aid of this formula of reduction the integral of -^ can

be found whenever 11 is an integer, or when it is of the form

— {r being an integer).

_« , ^. - r dx
74. Reduction of ; —,

when w is a positive integer.

Let C= a + 6 cos x, then -^ = - 6 sin a;, cos x = —-,—

.

dx b

Again, by differentiation, we have

d (sin a;) cos a; {n - i)b sin^x

_ cos* («- 1)5 (w - i)b cos'*

TT n
substitute—=— for cos x in the numerators of these fractions,

and we get

d (sin a;) i a («-i)6 n-\ 2(n-i)a

dx U"-^

dxlU"^') bU""'' bU"-'- U" bU"-' bU"

(w - i)a' _ - (» - 2) (2m-3)a («-!)(«' -6')

bU" bU"-^
"*"

bU'^^ bU»
*
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dx

ftcosa;)"'

Hence, transposing and integrating, we get

' dx -Jsln» (2w - 3)a f dx

« - 2 r <fe . .

~(«-i)(a^-6-')J C^" ^^ ^

By this formula tlie proposed integral can be reduced to

depend on

I

dx

a + b cos x'

the value of which has been found in Art. 1 8.

75. The integral considered in the last Article can also

be found by aid of a transformation, whenever a is greater

than b, as follows :

—

dx dx

^ ' Ua+ b) cos" -+ (a-b) sm'-j

(
, I + tan" -

I
dx

dx \ 2/

(a cos' 1 + 5 sin' -^ (a + B tan" '|Y

(where A '= a + b, B = a-b).

X VA
Next, assume tan ~ =

/ p" tan 0, then

[i + tan'H«fo = 2 /-B (i + tanY)rf^ :
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and we get

/ a!\" / A. \"~'

2 (.5 cos'0 +A sin'^)"-' d^

{AJ3)"-i

Hence, replacing A and Bhj a + b and a - J, we get

r «fe _ r (g- 6co3 2^)"~'tfj» .

Jia + boosx)"'^] (a'-J')»-i "
^^^'

When « is a positive integer, the integral at the right-

hand side can be found by expanding {a - b cos 20)""', and
integrating each term separately by formula (4).

Again, if in (29) we make 6 = a cos a, and 2<p = p, we
obtain

; ^ = L-i (' - ''OS " ^°^ y)'^^dy> (30)
J (i + cos a cos a')" sm*"'aj

•where tan - = tan - tan -.212 2

Hence, if we take o and — as limits for x, we have
2

dx

J ( I + cos a cos «)" Bin'""'a

76. Integration of

(l - COSO C03t/)"~^dl/.

f{x) dx

<j) [x)-ya + zbx + ci^

We shall conclude this Chapter with the discussion of the

above form, where /(a;) and ^{x) are supposed rational alge-

braic fxmctions of x.

Hf{x) be of higher dimensions than 0(«), the fraction

may be written in the form

{x) {x)



f{x)dx _„
Integramn of y^ . o7

^{x)ya + 2hx + cx^

Again, since Q is of the form^ + qx + ra? + &o., the inte-

gration of — can be found by the method of

y^ffl + 26a! + cx^

Art. 71.
p

The fraction -y-r can be decomposed by the method of

partial fractions (Chap. II.). To any root a, which is not a

multiple root, corresponds a term of the form , and the
vC "^ €L

corresponding term in the expression under discussion is

Adx
{x - a) '/a + zhx + cs^

The method of integration of this has been given in Art. 13.

Next, to a multiple root correspond terms of the form

Bdx

{x - aYva+ 2bx + ex'

This is reducible to the form of Art. 71 on making

X - a = -. Again, to a pair of imaginary roots corresponds

an expression of the form

{Ix + m)dx

{
{x - aY + /S") ^a + zbx + ex'

If 2 be substituted for x - a, the transformed expression

may be written

(Zs +M) ds

(> + /3') -/a + 2Bz + Cz"'

where L, M, A, B, C, are constants.

To integrate this form ; assume* s = /3 tan (6 + 7), where

* For this simple method of determining the integral in question. I am
indebted to 'H.t. Gathcart.
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fl is a new variable, and 7 an arbitrary constant, and the

transformed expression is

{Z/3 sin (fl + 7) + Ifcos (0 + y)\dB

/3yA cos' (0 + 7) + 2^/3 cos (6» + 7) sin (0 + 7) + 0^' sin' (6> + 7)

"

Again, tlie expression under the square root is easily

transformed into

^\A+ C/3' + (^- C/3') cos 2(0 + 7) + 2^j3 sin 2(6 + 7))

^ + Cj3' + cos 20 {(^ - C/S") cos 27 + 2^^ sin 27}

+ sin 20 {2jj3 cos 27 - (^ - Cj3'-) sin 27) .

Moreover, since 7 is perfectly arbitrary, it may be assumed

so as to satisfy the equation

2S[i cos 27 - (^ - 0/3') sin 27 = o, or tan 27 = . _ „^; :

and consequently the proposed expression is reducible to the

form

(Z'co3 + If^sin0)<f9

yP+ Q cos 20

(in which L', M', P and Q are constants), or

L'd{sm.Q) M'd {00a 9)

-/P+Q-2Qsin'0 V'P-Q+2Qcos'0'

each of which is immediately integrable.
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Examples.

I. 1 eos'fl sin29rf9. Ans. cos' 9.
J S

2. I sin's 003'9<?fl.

3. I sin' 9 eos'9<?9.

•cos*9(?9
4-

I

cos'

si:sin 9

f cos*9rffl

^'
J Biu»9

'

J (I + x^Y

7. \ x'"-'^ (a + hx^)P dx.

?. 1 e-' CQs^xdx.

sin' 9 sin'

9

1 T'

,
- -r- ! cos 29— cos' 29 + - cos' 29 !

.

64 1 3 5 )

COS89 „ , /, fl\
, h COS 9 + log f tan - 1

.

, (cos39-fcos9)^-.l-^-flogtan(?).

\5-3 3 /(r+»2)S

(g + bx'>)p*i

[

(p + i)tx<' -a}

> — j3(8ia!i!-cosa!) + cos'a(3sina;-oosa;)[.

If f-J sin ^+-^Isk
d9

sin"' 9 cos" 9 sin™-' 9 cos""'

9

J sin"'"^9cos"9'

determine the values of A and £ by differentiation.

(«' - a')dx

f 8in'9(f8

'
J (1 + cos 9)2'

.4«s. 2 tan— (

!sin"*9 d9 f
7- transforms into i""-"*' 1

(i + cos9)« J

where 9 = 2^.

sin"0 dif)

cos^""*"^*
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r dx

-J sin a ia ^ i(/«-*\'i ")

e
/tan -\

icos 9 (?9 . ? sin 9 8
i. 1 1 5 I

; -r^. Ans. - . tan M —— I.

(j + 4 COS fl)» 9 5 + 4 003 9 27 \ 3 /

15. I (sin-'a;)* (fo; = a {(sin-^ic)' -4 . 3 . (sin-'a:)'' + 4. 3 . z.l}

+ 4v^i - a;* sin"'« {(sin'^a;)' -3.2}.

. , - f{cosx)dx .

16. Proye ty Art. 74, that any expression 01 the form -. j r- is
^ ' ^ "^

(a H- cos iuj"

capable of being integrated when/ (cos x) consists of integral powers of cos x.

t^. Show, in like manner, that the expression

/(cos a;, Binx)dx

{a + b cos »)»

can be integrated when /(cos x sin x) consists only of integral powers of cos »
and sin X.

{A + Sx+ Cx') dx = M rug ^» X P*J T «Ai18. If f--5£±££±^)-^ P log (« + ,3:.) + Qlog(<. + 4» + «»;''),

J (ff + fix){a ^ bx + ex^)

„ f <fe

+ JR r ;,
i a + bx + ex'

find the Talues of P, Q, and Ji.

r (f9 ^ (a + J)* (a -i) sin 2^
ig. I . Ana. r— j—

»

J (a C0S29 + J sin^ 9)» 2 («*)* 4 C»*)*

where tan <p = It. tan 9.

\»

20. Find the values of n for which
f

- is integrable in finite

J y'azi. _ a;2»

terms.

a I . Prove that

\
— = , , I

(i -coBocosy)"-'*^.
Jo (I + COB o cos a;)" sm'^'-'ojo
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CHAPTER IV.

INTEGEATION BY KATIONALIZATION.

77. Integration of Monomials.—If an algebraic expres-

sion contain fractional powers of the variable x it can

evidently be rendered rational by assuming so = s", where n
is the least common multiple of the denominators of the-

several fractional powers. By this means the integration of

such expressions is reduced to that of rational functions.

For example, to find

(i + xi)dx

J
I + xi '

Let X = z*, and the transformed expression is

"2^(1 + z)dz
A —^ —

.

J i+s'

Consequently the value of the integral is

— + 2a;* - 4«1 + 4 tan"'(a^) - 2 log (i + x^).

o

Again, any algebraic expression containing integral

powers of x along with irrational powers of an expression

of the form a + bx is immediately reduced to the preceding,

by the substitution of s for a + bx.

Examples.

x^dx ^_ 2\/x —
1

V «

xdx 2 {2a + bx)

(a + bxf " *' /« + bx

J \/» - I i • 7

.. f-

J X + \/ X — I Vi > V 3 '
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78. Rationalization of i^(a!, ^/a + zbx + cx')dx. It

has been observed (Art. 28) that the integration, in a finite

form of irrational expressions containing powers of x beyond
the second, is in general impossible without introducing new
transcendental functions. We shall accordingly restrict our

investigation to the case of an algebraic function containing

a single radical of the form y^a + zbx + cx^, where a, I, c are

any constants, positive or negative.

Integrals of this form have been already treated by the

method of Eeduetion (Art. 76). We shall discuss them here

by the method of rationalization.

The expression* '—V-r can be made ra-

^W -/a + 26a! + ex'

tional in several ways, which we propose to consider in

order :

—

(i). Assume y^a + zbx+cx^ = z- x -\/c, (i)

Then a + 26a; = s' - zxz -v/c ; .". Mx = zdz - ^/c {xdz + zdx),

or dx[h + z ./c) = dz{z-x v/c) = dz ./a + 2bx + ca?',

dx dz
(2)

y^a^- 2bx + cx' b + z^o

2{b + z^/c)

This substitution obviously renders the proposed ex-

pression rational ; and its integration is reducible to that of

the class considered in Chapter II.

* It will be shown subsequently that the integration of all expressions of

the form

F(x, y a + ibx + ex') dx

is reducible to that of the above when J is a rational algebraic function.

It may also be observed that, in general, the most expeditious method of in-

tegration in practice is that of successive Eeduetion (Arts. 71, 72, 76).
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When 5 = o, we get

dx d%
, a' - ffl , . , s

=, and X = ——- (see Art. 9).

V « + ex' Z^/o 2Zy/c

By aid of the preceding substitution the expression

dx

transforms into

(» -ip) -v/a + 26a! + C3?

dz

(Art. 13)

For example, to find

s* — 2%p -yc - a — 2'^b

dx

{p + qx) \/i + a?

TT 2' - I , dx 2
Mere x = , and

22 '
(p + qx) v^i + a^ qz' + 2pz - q'

J (^ + qx) -s/ \ -V x' »/p' + f \q% +p + ^/p' +q'J

When the coefficient c is negative the preceding method
introduces imaginaries : we proceed to other transformations

in which they are avoided.

(2). Assume* \/a + zbx + ex' = ^/a + xz. (4).

Squaring both sides, we get immediately

zh + ex= 2z v^ + xz'

;

.: dx{o - s") = 2dz{Ya + xz) = zdz \/a + 2bx + ci?.

TT dx zdz , ,

Hence — = . (5).
/ya + 2bx + cx' c - s'

* This is reducible to the preceding, by changing x into -, and then em-

ploying the former transformation.
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And X = -^^-^—
z
—'-.

(6)

This substitution also evidently renders the proposed
expression rational, provided a be positive.

For example, to find

f dx

i X\/\ - «'

Assume -v/ 1 - a? = \ - x%, and we get

dx r^« /t _ y/7

l;7r^=jT = ^°^^ = ^°<

—

-X
—

>

(3). Again, when the roots of a + 2 te + cx^ are real, there

is another method of transformation.

For, let a and /3 be the roots, and the radical becomes

of the form

<s/c (x - a)(x - 13), or ^/c{x - a)(]3 - x),

according as the coefficient of a;' is positive or negative.

In the former case, assume \/x - a = z \/x - )3, and we
get

a - Bz' , „ a - B dx 2zdz
X = ^ ; hence x- ^ = ; .-. ^ =

-,.

I - s* ' I - s* X - p I - s'

Accordingly

dx dx 2 dz

^\/c{x-a){x-f5) z{x-(i)'^/c v^i-2*

In the latter case, let y'a; — a = z \/ /3 — x, and we get

a +j3s'

(7)

X =

. dx 2 dz
and = —7= . (8)

Yc [x - a) (]3 - x) yc I + s*
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for example, the integral

f dx

transforms into

r 2dz

on making x
s^ + I

The student can compare this method of integrating the
preceding example with that of Axt. 13, and he will find no
difficulty in identifying the results.

It may be observed that in the application of the fore-

going methods it is advisable that the student should in each
•case select whichever method avoids the introduction of

imaginaries.

Thus, as already observed, the first should be em-
ployed only when c is positive : in like manner, the second
requires a to be positive; and the third, that the roots

be real.

It is easily seen that when a and c are both negative, the
roots must be real ; for the expression

/ 1 lb' -ac-(cx -bf'/-a+zbx- car, or / ^ —

is imaginary for aU real values of x unless b' — ac is positive

;

i.e. unless the roots are real.

Accordingly, the third method is always applicable when
the other two fail.

Trom the preceding investigation it follows that the

expression

Fix, ^a + 2bx + cx^) dx

can be always rationalized ; F denoting a rational algebraic

function of x and of '\/a + 2bx + ex'.
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Examples.

. -<<««• —7= log—7^== j=
J (2 + 3«)v/4-a' 4V2 v/4+2ii! + v' z-a

r dx
*

J [(»^ + a:«)i + »]»

Assume z = (a' + a;*)* + a, and we get for the value of the proposed integral

2 , 2 «'
— a J.
3 Sz*

2 a;' + a; \/'2 + a;' - a(/ y ^ 2a;' + a;v'2 + ar'-a
rfiB v/ « + V 2 + as*. .<s»s.

^ V;!: + V'2 + a!>

4. f a:™ { (a' + a;'i)i + a;}" (to.

JIalung the same assumption as in £z. 2, the tranafoimed expression is

which is immediately integrable when »j is a positive integer.

f dx [(r + a:')i + x]"^^ [(l + x>)i t- aj]"-'

^'
J {(i+a;2)l-a;}»'

"*' 2(»+i) 2 (» - i) Ti

^£

V^ff + 2ia; + ca:^ (v^* + 2*a; + ca;^ ± xy cj

Let \/« + iJa; + ca;' + a;v c = ^i then, as in Art. 78, we get

dx dz

\/ a -k^ 2bx + cx"^ h +z y'

c

hence the proposed expression transforms into

de

S» (J + 1!V «)
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79. Creneral Investigation.—The following more
general investigation may he worthy of the notice of the

student.

Let It denote the quadratic expression a + ibx + ca?;

then, since the even powers of v^-B are rational, and the odd

contain '/M as a factor, any rational algehraio function of x

and of vB can evidently he reduced to the form

P+ Q^R
F+qyiL

where P, Q, P', Q' are rational algebraic functions of sc.

On multiplying the numerator and denominator of this

fraction by the complementary surd P' - Q' yS, the deno-

minator becomes rational, and the resulting expression may
be written in the form

where M and If are rational functions.

The integration of Mdx is eiiected by the methods of

Chapter II,

,_ tJsritdic
Also

which is of the form

-/B

/(jg) dx

(j) (x) '/a + zhx + c;^

Let, as before, -/a + zbx + ca^ = vc (x - a){x - /3), and

substitute w ^ r-; instead of x, when the radical becomes
\ +2fiZ + vs'

a' + 2n'z + v'z'.

(9)

Again, if the quadratic factors under this radical be made
each a perfect square, the expression obviously becomes

rational.

[7]
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The simplest method of fulfilling these conditions is by
reducing one factor to a constant, and the other to the term
containing z^.

Accordingly, let

X — aX = O, fi — afi = O, n —
J3/jl'

- o, V — j3v = o

;

or fi = o, fi = o, X = nX', V = /3y'.

On making these suhstitutions the expression (9) heoomes

X + y'fs' X + V'Z'

In order that v- cX'v' should he real, X'and v must have
opposite signs when c is positive, and the same sign when c

is negative.

It is also easily seen that without loss* of generality we
may assume X' = i, and v' = + i.

o a

Hence, when c is positive, we get x =—^-^, and when

a + /3s'
c IS negative, x =

.°
1 + z^

These agree with the third transformation in the' preced-

ing Article.

More generally, when the factors in (9) are each squares,

we must have

(ji - a/j.')' - (X - aX) (v - av) = O,

or ;u"-Xv+(Xv' + i;X'-2/i/)a+(ju''-XV)a' = 0, (lo)

and a similar equation with j3 instead of a.

Moreover, by hypothesis, a satisfies the equation

a + iba + Co? = o.

• For the sulistitutiou of y^ for —;- transforms
A.

a^ + Pv'z^ . . a + Py' ,—; 7-r- mto ^ ; .•. &c.
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Accordingly (lo) is satisfied if we assume the constants

A, fi, &c., so as to satisfy the equations

fi^-\v = a, X'v ^\v-zixfi=2b, fi^-X'v' = c. (ii)

Again, solving for z from the equation

X (X' + 2/i's + vV) =\ + 2fiS + vz^, (12)

we obtain

<v - a!!/') z + ju - iB/t' = yZ/u' - Xv + (Av' + X'l/- 2ju/i') a; + (ju'" - X'v')
a"

="ya+ zbx + cx'. (13)

Also, hy differentiation, we get from (12),

(X' + Zfi's + vV) rfa; = 2 {/i + vs - a; (fi' + v'z) } dz

= 2Y a + zbnc + ens' dz;

dx 2dz

va + 2hx+ cx^ X' + 2fxz + v'z^
(M)

Now, since we have but three equations (11) connecting

A, ju, &e., they can be satisfied in an indefinite number of

ways.

We proceed to consider the simplest cases for real trans-

formations.

(i). Let a be positive, and we may assume v. = o, and
^' = o ; this gives

fi = ya, \v = 2b, X'v = - e.

Again, without loss ofgenerality, we may assume v'=- i,

which gives

X = - 2&, X' = c ; whence x = ^ —-—->

and

c-z'

dx 2dz

v/ffl + 2bx + cx^ c - 2*'

These agree with the results in (5) and (6).

[7aJ
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(2). In like manner, if c be positive we may assume

V = o, ju = o, and v = i,

which gives

fi = -/c, \ = - a, and X' = 2 6
;

%• - a , dx dz
.'. X = -;^, ana

2 (6 + Zv/c) a/a; + 2bx + cx^ b + z\/o
'

as in (2) and (3).

It may be observed that since these results do not contain

the roots a and j5, they hold whether these roots be real or

imaginary; as already shown in Art. 78.

It is easily seen that if we make fi = o, and /i = o, we
get the third transformation.

80. If the expression to be integrated be of the form

/(if) dx

^a + 2bx + cx^

where f{x) is a rational algebraic function of x, it is often

more convenient to proceed as follows :

—

The substitution of s— for a; transforms the proposed

/( 2 - -]dz „
into ^ ^ -, where a = .

ya' + cs' «

If the even and odd powers be separated in the expan-

sion of /I z - -
J,

it can plainly be written in the form

^(z^) + zW),
and the proposed integral becomes

r ^{%^)dz fz^ (z') dz

J y^a' + cz^ J y^'a' + cz*

The former of these is rationalized (Art. 24), by making

^/cTTT^ = 2/z, and the latter by making y^o' + cs' = y.
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It may be observed that in general the expression

f{x') dx

is also made rational by the transformation

v^a + co^ = xy.

8i. Case of a Recurring Biquadratic under the
Radical Sign.—As the solution of a recurring equation of

the fourth degree is immediately reducible to that of a
quadratic, it is natural to consider in what case an Elliptic

Integral (Art. 28), in -which the biquadratic under the radi-

cal sign is recurring, is reducible by the corresponding sub-

stitution.

Writing the expression in the form

d>{x)dx (b(x)dx^
, or — '' ' r=^,ya + 2bx + cx'^ + zbafi + ax^ f , i\ , / i\

^Ja(x

and, assuming a; + - = 2, the radical becomesv^as^H- 262 + c-2«;

and also — ( a; - i
] = c^z.

X \ xj

Consequently, in order that the transformed expression
should be of the required type, it is obvious that ^{x) must
be reducible to the form

^-^44.

In this case

transforms into

'ya+2bx + cx'^+zbiii?+ax*

f(^)dz_

'^az' + 2bz + c - 2a'
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In like manner, the expression

^/a + zbcc -k- car^ - 2hx^ -b ax*'

transforms into -
y , ty the assumption

v/as'- 26s + 2a- c

I

X— = s.
X
When 5 = the expression can in some oases be reduced

by assuming either

ic + — or x"—5 = 2.
ar

(a*- l)dx

J X\/l +

J X\/l + i

X*

{x^ + i)dx

r I - a;' rfs

' I + a;' V' I + a;*

I + a;2 ife(I + a;2 ife

iXAMPLES.
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8. f^.. ^„,,3{?^iZ_3f)(„ + i,,,.

J {a+bx)i lob'

Ji - «' V' I + a' + a* " \/3 I - a*

Assume r = (i +V)i ein fl, &c.

"• f
^-—I— " '^'i

—^V
J (' + «'"){(' + it'")" - «'}» M' +«'^)'"/

(I + x)i + (i + »)»•

AsEume t + x = z'.

'^'
J (l-a^)(i+a;*)r

. I , (i + a^)J + 3:^/2 I , (i + a:*)* '

-4««. —^ log i —
^ = tan ' ^ -~.

14- 1
^ —r. Ans. .

5-
J i-a;* '

Ans. —^ log — H -:;taii-' — .

7../1 \ I - x' I 21/

z

\/l+a'

ix
16 \—LZ.^— ^

ia;'' + 2»a:^ + «*

Ans
'

, a;\/2(c-a) + .v/l + 2(!a:' +a2 3;»
^"'* /-;^ r log -'^^—

^

-—. , when oa.

I . Ix\/%{a-e)\ ,

„ —
, sm"' I

—^——z—
1 , when a ><;.
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CHAPTER V.

MISCELLANEOUS EXAMPLES OF INTEGRATION.

_ . (Aoosas+ B sin X + C)dx
82. Integration of ^ ;—

;

—

.

aoosx + Biace + c

Let a cos* + b sin x + c = u, then -a sinx + b cosa; = -;-,

ax
Next assume

A oosx + B sinx + C = Xu + /i— + V,

and, equating coefficients, we have

A = Xa + fib, B = Xb - /la, C = Xc + v.

Solving for A, /x, v, we get

_ Aa + Bb _ Ab - Ba _ (Aa + Bb) c
^~

a' + b" ^~ a' + b' ' ''~^~
a? + b' '

_. f (^ cos « + 5 sin a; + C) dx
Hence ^^ -1-^ —^

—

J a cos « + sm a; + c

(Aa + Bb) X Ab - Ba , , , .

= -^

—

I
—1~~ + —r—7^ log {a cosa:+ 6 sin a; + c)

a^ + ¥ a^ + b' ° '

(a' + b')C-{Aa + Bb)c
^

a'^ + b^

r dx

J a cos a; + J sin a; + c'

The latter integral can he readily found ; for, if we make
a = r cosa, b = r sin a, we get

o cos a; + J sin a; = r (cosar cos o +Bina! sin a) = rcoB{x - a).



Integration of
Ji'^osx, smx)dx

^ ^^^^
a cosa; + o smx + c

On making x~ a = B, the integral reduces to the form con-
sidered in Art. i8.

As a simple example, let us take

({A + B tan oe) dx

J a-vh tan x

T-r A ^^ B tan x ^ cos a; + 5 sin a;

Mere
a + i tan x a cos a; + 6 sin a;

'

and we evidently have

f{A-^B\&-D.oc)dx (Aa + Bb)x ~^Ah-Ba, , , . ^

a + 6tana.
= "a"6" ^ ^^T^logC^cos^ . Asma;).

83. Integratioa of
/(«°««^. «^^^)^^

.

a cos K H- sm a; + c

where /is a rational algebraic function, not involving frac-

tions.

As in the preceding Article, assume x = Q + a, and the
expression heeomes of the form

^ (cos Q, sin Q) dO

Acosd + B

Again, since sin' 6=1- cos' 6, any integral function of sin 9

and cos 6 can be transformed into another of the form

0j (cos 6) + sin 6 02 (cos 6).

Accordingly, the proposed expression is reducible to

01 (cos 0)rfS 2(cos 0) sin 6 rffl

Acosd +B Acosd + B

The latter is immediately integrable, by assimiing

^ cos + jB = 3.

To integrate the former, we divide by ^ cos + B, and
integrate each term separately.
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84. Integration of

/{cosx)dx

(ffli + Si cos x) (fla + h COS x). .. .{a„ + b„ COS x)

where/, as before, denotes a rational algebraic function.

Substitute z for cos x and decompose

m
(«! + 61 2) {a^ + bzz) . . . . (fl» + b„z)

by the method of partial fractions : then the expression to be
integrated reduces to the sum of a number of terms of the form

dx

A + £ cosa;'

each of which can be immediately integrated.

EXAICPLES.

f
—^ ;. An., -i log (

L±E^) - A tau- te).
J cos a; (5 + 3 cos ») 10 \i-sina!/ lo \ 2 /

I
. 1 r, when a>i.

sin'^x (a -t- « cos x)

J — a cos a J' , li + a coix\
„js-' ( I

.

{a^ — b'^)amx (a' - 4')* Va + icosa;'

Idx . tana; i , , /ir a;\ i* f dx
:;—

;

; r. AtU. ; lOg tan I - H H \ -. .

cos''a:(a + icofla;) a a^ V4 ^7 o»Ja + eoosai

85. Tntegration of [f{x) +/(x)}e'dx.

The expression e^Pdx is immediately integrable whenever
P can be divided into the sum of two functions, one of which

is the derived of the other.

For, let P = f{x)+f{:x),

then le'Pdx = l^f{x)dx + ld'f'{x)dx.
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Again, integrating by parts, we have

/ e'/(x) dx =f{x) e -
J ^f{x) dx.

Accordingly,

\[Ax)^f(x)\e^dx = e'f{x).

For instance, to find

V(^
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Again, differentiating both sides with respect to a, we
have, since x and a are independent,

(T- . F{x,a) d . ^{x, a)

da dw da '

or (Art. 119, Diff. Calc),

d /'d . F(x, a)\ _d . <p (x, a)

dx\ da j da '

Consequently, integrating with respect to x, we get

d . F{x, a) fd . ^{x, a)

. d
I.e. —

da

F{x^) ^ f d. <i>{<«^<^)^
da ] da

'

In other words, if

M = J (a;, a) dx.

du t dij)

then
da -\t--

provided a be independent of « ; in which case, accordingly:, it

is permitted to differentiate tinder the sign of integration.

By continuing the same process of reasoning we obviously ,

get

„-J da-
'^' ^'^

where «« = J ^{x, a) dx, a being independent of x.

For example, if the equation

f e*"
^dx = —
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be differentiated w times with respect to a, we get

\----m)

="^'"^1TG
(See Art. 49, Diff. Calc).

Again, in Art. 2 1 we have seen that

J

e" (a sinmx-m cos mx)
e" sm jwa; ax =—

^

'-.

mr + a

Accordingly,

f . , f d\'f^{a&mmx-m<io&mx)\

J
^ ^" ^^^ '"^ '^^

=y ( M^^ a^

—
-}

We now proceed to consider the inverse process, namely,
the method of integration under the sign of integration.

87. Integration under the Sign of Integration.—
If in the last Article we suppose i^{x, a) to he the derived

with respect to a of another function v, i.e. if

, . dv

then V = S^{x, a) da.

Also by the preceding Article we have

i{H-\
Hence «;«?»= F{x, a) da.

In other words, if

F{x, a) = U) {x, a) dx,

<p{x, a)dx = F{x, a).
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then F(x, a)da = \[^^{x, a) da] dx. (3)

It may be remarked that the results established in this

and in the preceding Article are chiefly of importance in

connexion with definite integrals. Some examples of such

application will be given in the next Chapter.

88. Integration by Infinite Series.—It has been
already observed that in most cases we fail in exhibiting the

integral of any proposed expression in finite terms. In such

cases, however, we can often represent the integral in the

form of a series containing an infinite number of terms.

An example of an integral exhibited in such a form has

been given in Art. 63.

The simplest mode of seeking the integral of/(a;)<foin the

form of an infinite series consists in expanding /(») in a

series of ascending powers of x, and integrating each term
separately \ then if the series thus obtained be convergent, it

represents the integral proposed.

It can be easily seen that if the expansion oif{x) be a

convergent series, that of jf{x) dx is also convergent.

For let

f{x) = ao + aiX + a^of + . . . a»a;" + &c.,

then

'

, . , ttxx^ a^o? «„!»"+'

/(a;) dx = ttoX +—•
+ + . . . + + . . .

^ ' 2 3 n + I

Now (DifE. Oalc, Art. 73), the expression for f{x) is

convergent whenever -^ is less than unity for all values

of n beyond a certain number ; and the latter series is con-

vergent provided — be less than unity, under the same

conditions.

Accordingly, the latter series is convergent whenever the

former is so.
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ExAlffPLES.

,
, H • + V &a.

•'V' I -»* I 26 2.4 II Z.4.616

2.

-7= = - + --

V' I - »* I 2 I

. - = 2 v' Bin a:
(

i + + i + . . .

J
.

V sina; ^ 25 2.49 /

3. 1 (i +<!a!'')e!!;»'-i<?ai = a;»' (—

+

^^-^—i^ + &c. ).
J \)» q m-^n I . 2 . q' m + 2n J

8g. Expansion of log (i + zmcoax + m") dx.

We shall conclude by showing that the integral

log (i + 2m cos a; + miF) dx

can he exhibited in the form of an infinite series.

For we have

I + amcosa; + »»''= (i + me^ "')(i + me"**^).

Hence

log (i + 2OTCosa; + nf) = log (i + wie*''"') + log (i + wje"*'^)

= m
(f'-"-

+ e-**^) -— (e'^"^ + e'"^*^') + &c.

= 2 mcosa; cos 22; +— cos3i» - &c. .

v 2 3 y

Accordingly

fi / IS 1 f • , sin 2a; , sin 32; \ , ,
log(i + 2»»cosa;+w^)aij;=2( msinaj-m'—J— + m'—r~~

• (4)

This series becomes divergent when m is greater than
unity. In that case, however, the corresponding series can be
easily obtained.
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For I + 2m cos x + m'^ = m'^i i + |( i + 1,

\ m J\ m )
and accordingly

, , ,< , /cosa; cos 2x cos %x , • \
log ( I + 2>wcosa; + rw) = 2 logw + 2 — + r- - ao. .

Consequently, when m> i, we have

f, , 5\j 1
/sina; sin 2a! sin 3a! \

log(i+2»icosa;+m')aa;=2a;logOT+2 ;—^+ , „ —•• I-

J
o\ y ° \ »i z^m' ym^ J

From the ahoTe it is easily seen that the integral

Jlog(i + acosa;)&!

can be exhibited in the form of an infinite series when a is

less than unity : for making a =
; we have

"" °
I +m'

log (i + a cosa;) = log (i + 2m cos x + m') - log (i + w').

The relation between m and a admits of being exhibited

in a simple form ; for let a = sin a, and we get m = tan -.

Making this substitution in (4), we get

log(i + sinaCOsa;)£?a; = 2a;log(cos-

A « • , , a sin 2a! . N - .

+ 2 ( tan - sm a- - tan' — + &c.
J.

(5)
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EXUIFI.ES.

I2D0SX+ ismii!)dx . i3« 5, , ...
3 cos a; + 2 sin as 13 13

— . „ -taii9 + ^-^tan-i(tan9v/2).
-Biii''9 2 z^ 1

e'(a:° + g + T.)ix d'x

l+iC"

^- [^i^^^^g
= |log(i + <ios9) + ^log(i-cos9)-^log(i-2oosfl).

siu-tan-<?9 /i-sin-\ /v 2 sin- + l\
5. .-^.^ =los( ^- ) + J- log L_

).

6. When a;'' < i, prove that

dx X I a;' I 3 !s' 1.3.5a;''f dx _ * '
ff

J V^ I + a;* I 2 S

ia!*> 1

f
<?j; _I II 1.31 1.3.5 I

J v/ 1 + a;* X 2 sx^ 2 4 ga;9 2.4.6 i^x^^

' \/l + X* I 25 2.49 2. 4. 6 13

and whan a;' > 1

7. Prove that

f e«» , . f, „ , «S+a; «' (3 + a;)« )

and determine when the series is convergent, and when divergent.

8. Prove that

f e + e . , sm <o A.' + I^ sm a
I sm'' attai = h •

/»+ I 1.2 /tt + 3

_^
(A'+Ig)(A' + 38) sin'^'^a

1.2.3.4 1^ + 5

Suhstitute a for sin"' a; in the expansion of /™ ^"{Dif. Calc, Art. 87), &o.

„Aw_^-Aw A sin'"''„ A(A«+ 22)sin''**.,

J 2 '
I /t + 2

.'4-2^

. 2 .

[8]

fi + 2 1.2.3 ^ + 4

,
ACA''4-2S)(A2 + 42)sin''**« ^

1.2.3.4.5 /• + «
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CHAPTER YL

DEFINITE INTEGRALS.

90. Integration regarded as Summation.—We have in

the commencement observed that the process of integration

may be regarded as that of finding the limit of the sum of

the series of values of a differential /(a!)c?a;, when x varies by
indefinitely small increments from any one assigned value to

another.

It is in this aspect that the practical importance of inte-

gration chiefly consists. For example, in seeking the area of

a curve, we conceive it divided into an indefinite number of

suitable elementary areas, of which we seek to determine the

sum by a process of integration. Applications of finding

areas by this method will be given in the next Chapter.

"We now proceed to show more fully than in Chapter I.

the connexion between the process of integration regarded

from this pomt of view and that from which we have hitherto

considered it.

Suppose ^ (os) to represent a function of x which is finite

and continuous for all values of a> between the limitsX and Xo ;

suppose also that X - Xo is divided into n intervals Xi - «o,

«2 - Xi, Xs- x-i, . . . X - x„.i ; then by definition (Diff . Calc,

Art. 6), we have

in the limit when ici = sjo ; accordingly we have

0(a!,) - ^{Xo) = {Xi - Xo){(l>'{Xo) + to),
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where to becomes infinitely small along with Xi - x^. Hence
we may write

^ (»i) - ^ («o) = (»i - a'o) {^'(a'o) + £o)

,

* ('"a) - (*«) = ('^'s - %) {0'(«j) + £2),

(X) - (a;^i) = (X - «:„_,) {^'C^ft-O + s«-i}>

where to, ti . . . eb-i become evanescent when the intervals are

taken as infinitely small.

By addition, we have

{X) - f (Xo) = {Xi - Xo) <l>'{xo) + {Xt- Xi) ^'{x,) + . . ,

+ (X - X„.i) ^'(a-n-i) + {Xi - Xo) £0 + («2 - «i) £1 + . . . + (X - X,i.j) £„-i.

Now if I) denote the greatest of the quantities eoj eu . • • £n-i>

the latter portion of the right-hand side is evidently less

than (X - »(,) r/ ; and accordingly becomes evanescent ulti-

mately (compare Diff. Calc, Art. 39).
Hence

i>
(X) - (xo) = limit of [(»i - Xo) ^'{xo) + {x^- Xi) f'{xi) + . . .

+ (X-aj„_0^'(«„-i)], (1)

when n is increased indefinitely.

This result can also be written in the form

^ (X) -
(p («o) = '2(j)'{x)dx,

where the sign of summation S is supposed to extend through
aU values of x between the limits Xo and X.

91. Definite Integrals, Iiimits of Integration.—
The result just arrived at, as already stated in Art. 31, is

written in the form""

f{X)-f{xo) = \^f{x)dx, ^ (2)

where X is called the superior, and Xo the inferior limit of the

integral.

[8 a]
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Again, the expression

"0

is called the definite integral of ^{x)da) between the limits Xa

and X, and represents the Umit of the sum of the infinitely

small elements ^ (a) dx, taken between the proposed limits.

From equation (i) we see that the limit of

(xi-x„)f'{x^) + {Xi - Xi)f{xi) + . . . + (X - a;„.i)/(a;„_i),

when Xi - Xo,Xi- Xi, . . . X- x„.i become evanescent, is got

by finding the integral of/'(«) dx (i. e. the function of which
/'(«) is the derived), and substituting the limits Xo, X for x in

it, and subtracting the value for the lower limit from that for

the upper.

If we write x instead of X in (2) we have

f{x)-f{x,) = r f{x)dx. (3)

in which the upper limit* x may be regarded as variable.

Again, as the lower limit a!o maybe assumed arbitrarily, /(a;o)

may have any value, and may be regarded as an arbitrary

constant. This agrees with the results hitherto arrived at.

In contradistinction, the name indefinite integrals is often

applied to integrals such as have been considered in the pre-

vious chapters, in which the form of the function is merely

taken into account, without regard to any assigned limits.

As already observed, the definite integral of any expres-

sion between assigned limits can be at once found whenever
the indefinite integral is known.
A few easy examples are added for illustration.

• The student should ohserve that in {3) the letter x -which rtands for the

superior limit and the x in the element f'(x) dx must he considered as being

entirely distinct. The want of attention to this distinction often causes much
confusion in the mind of the beginner.
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Examples.

ulitdx. Am. ; .

« + I

f
1 sin e de -_

Jo cos^fl " ^

f ^r 4 /_ ,_

r* dx T

Jo a- + a*' " 2»'

I

f" dx

6. I e""* <to (a positive),

Jo

7- Lt
<&!

8.

I'

c I + 2a: cos ^ + a;^
" 2 sin*

f"^ dx <p

Jo 1 + 22 cos ((> + «'' " sin ^*

1*
m

e-i" sin JMa; <fe.
a' + i

r" COB mxdx. „ —. ;.

II. f = =—=:^=r, when flc-i' is positive.

J.. « + 2te + ex^ ^^ _ jj

92. To prove tbat

jV'd -.)™-'^ =];.-(! -^r^^ %;-:;)^-(;!r:i).

M^Ae« m and n are positive, and m is an integer.
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The first relation is evident from (34), Art. 32,

Again, integrating by parts, we have

f/jJ* Wi — I f
SB"-' (i - x^^-^dx = - (i -a-)'"-' + U!"(i - «)*»-»(&;.

Moreover, since n and m - 1 are positive, the term
a!"(i - a;)"^' vanishes for both limits ;

n m - 1 f

'

The repeated application of this formula reduces ther in-

tegral to depend on a^^^^dx, the value of which is .

Jo m + « - I

Hence we have

^:^^{i-x)^^dx=
^- 2- 3. ..•(>» -I)

(^
Jo «(«+ l) ....(» + OT- l)

This formula, combined with the equation

a;"-' (i -«)"•-' rfa; = f a;'"-' (i - a;)""' rfa;,

shows that when either m or ra is an integer the definite

integral

J

1

a!''-'(i -xy-^dx

can be easily evaluated.

When m and « are both fractional, the preceding is one
of the most important definite integrals in analysis.

We purpose in a subsequent part of the Chapter to give
an investigation of some of its simplest properties.

ExiltPLES.

'• 1 a?{i-xfdx. Am. .

•0 3.7. II. 13

r««(i-ai)» dx. ,, .

5.7-9. 13-17
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ir IT

93. Talues of sin.''«rf'a;and ooa'^xdx.

One of the simplest and most Tiseful applications of

definite integration is to the case of the circular integrals

considered in the commencement of Chapter III.

We hegin with the simple case of

sr

sivPxdx.

If in the equation (Ait. 56)

r . „ ,
cos « sin"-'« » - I f . „ , ,

J n n ]

we take o and - for limits, the term — — vanishes
2 n

for toth limits, and we have

IT IT

f^ • , « - 1 f
*'

. ,
syD!'xdx = em^'^xdx.

Jo n Jo

,
Now, if « be an integer, the definite integral can be

easily obtained ; its form, however, depends on whether the

index n is even or odd.

(i). Suppose the index even, and represented by 2m,
then

IT IT

fs 2m — 1 (^
srD?'"xdx = sm"^'a!cfe.

Jo 2m Jo

Similarly,

n IT

six^-^xdx= sai}^^xdx;
Jo 2m-2j„

and by successive application of the formula, we get

\\in-'xdx = '^j ^^"'-'^
. ^. (5)

Jo 2 . 4 . . . . . 2m 2 ^'"
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[2). Suppose the index odd, and represented by 2to + i,

then

Jo 2OT + iJo

Hence, it is easily seen that

rsin"""^ca. =
^-^-^---- ^^

, . (6)
Jo 3 • 5 • 7 (2OT+I) ^

'

Again, it is evident from (35)> Art. 32, that

cos"xdx = sin"a!rfi»,

and consequently (5) and (6) hold when cos x is substituted
for sin x.

94. InTestigation of sin^^cos^^flfc,
Jo

From Art. 55, when m and n are positive, we have

f 2 . , W - I f2 .

sm'^xcoa^xax = sin'"a!COs""'i!;rf'ir,

Jo m + njo

« IT

f2 . , tn — 1 [^ ,

and Bin"** cos"a; aa; = sin"*"'ar cos"a! cS».

Jo m + nj„

Hence, when one of the indices is an odd integer, the
value of the definite* integral is easily found.

* The result in this case follows also immediately from Art. 92, by making
cos2 x = z; for this substitutioiL transforms the integral into

ifi ^
i)l»2 2 dz.

I fl
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For, writing 2m + i instead of m, we have

zm

121

sin""*'a;cos"a;c?a;
2m + n + I

sin"*"' (BOOS" «!«&;.

Eence

sin""" a; cos" a; (fe

2»l(2OT - 2)

{2m + n+ i)(2ffj + w- i) . . . . (w + 3).

2.4.6 ... (2m)

In like manner,

(?» + l)(» + 3) . . . (« + 2»l +.1)

sin a; co^xdx

(7)

1:
8in""a;cos"'a;£fo!

2W- I fa ,

= —. r SI
2(m + «)Jo

sin"" a; cos"*"''*^*.

Hence

dxf'sin""a!cos'^a;<fa;=
' • 3 • 5 • •

(^w - 1) [\^2m^
J (2»» + 2) ... \2m + 271) J „

^ I . 3 . 5 . . . (2W- l) . I 3 . 5 . . . (2OT- l) IT

2.4.6 (2W+ 2W) " 2' '

in which m and n are supposed hoth positive integers.

Many elementary definite integrals are immediately re-

ducible to one or other of the preceding forms.

For example, on making x = tan 6, we get

dx

2.4.6... (2«-2) 2
'

Joli+a;")"

f"
Similarly, by a; = a sin 6, x" (a" - a;")

TT

a''+'""f'sin»0cos'»"0(f0.

c& transforms into
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ra 5
In like manner | (2ax - x^ydx,

on making » = a (i - co3 6), becomes

^m+l rgjj,

The expressions for these integrals, when m and n are

fractional in form, will be given in a subsequent Article.

EXAUPLES.

1. I easifxeoi^xdx. Am.

IT

2. I ais?xcos^xdx.

IT

3- I sin'"'"' it cos'"-' a; i&.

4.
I

(i - «')"<*».

f 1 a;'»<?a; I . 3 . 5 . . . (2» - l) i

3.5 -7 "

5 . 10 . 20 . 30 . 40
" 9- "9 -29 -39 -49'

1.1.3... (»» - i)

" ». («+i) . . . (« + «i- i)*

2.4.6... (2tt)

" 3 . s . 7 . . . (2» + !)•

1 "v/i-a* 2.4.6... 2« 2

I a;S>l+l(i|; _ 2 .4. . 6 . . . 2«

V'l -a' 3 • 5 • 7 • • (2» + I)

7. Deduce 'Wallis's value for ir ty aid of the two preceding definite integrals.

xfdx . 2 . 4 . 6 ...(»- i)

g . Ans. . >

lia+ix^f'' 3-5. 7.... » a/o*"*'

when » is an odd integer.

9. f x'{2ax-a'')^dx.
Jo
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95. Talue of I e-*^ dx, when n is a positive integer.

In Art. 63 we have seen that

e"^ «" cfe = - e^a!" + n e^x^'-^dx.

Again, the expression — vanishes when x= o, and also

when a; = 00 (DifE. Calc, Art. 94, Ex. 2).

Hence e^i^dx = n\ e-^x"-'^dx. (10)

Consequently e"**!" £& = i . 2 . 3 . . . «. (11)

Many other forms are immediately reducihle to the pre-

ceding definite integral.

For example, if we make a; = as we get

in which a is supposed to be positive.

Again, to find x?" Qjog x)" dx ; let x = e"", and the in-

tegral becomes

• Jo (m+i)«*'

Since log x = - log ( -
J,

this result may be written in the

form

f
*
X- (log -Y dx = '•/•^V:^ ( 1 3>
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The definite integral e^»" <h is sometimes known as

The Second* Eiderian Integral, and is fundamental in the

theory of definite integrals. Being obviously a function

of n, it is denoted by the symbol r(«), and is styled the

Gamma-Function.
It follows from (lo) that

r(w+ i) = nr{n). (14)

Also, when n is an integer we have

r(n+ i) = I .2.3 ,..«. (15)

Again, when x is less than unity, we have

I

I - X
I + x + x' + i? + &c;

log* -= logx{i +x+x^+ ...)dx

^by a well-known result in Trigonometry).

In like manner we get

1,

' log X dx tt'

I + X 12'

An account of the more elementary properties of Gamma-
Punctions will be given at the end of this Chapter.

* The integral |
!•""' (i - x)"-^ dx, considered in Art. 92, is sometimes called

Jo

the First Eulerian Integral ; we shall show subsequently how it can he ex-

pressed in terms of Gamma-Functions.



I a-'sc"dx.

!'
log a;

I-
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Examples.

Ana. I . 2 . 3 . . . B.

I . 2 . . . «

(log a)"

;<?«•

!:^2^"--'-'-<"-'[-i*F.—]•

4

96. I/u and V be both functions of a?, and if v preserve the-

same sign while x variesfrom x^ to X, then we shall have

rX rx
I uvdx = U \ vdx.

where U is some quantity comprised between the greatest and the

least values of u, between the assigned limits.

For, let A and £ be the greatest and the least values ot

M, and we shall have,, when v is positive,

Av > uv > Bv ;

when V is negative,

Av <uv< Bv.

Consequently, for all values of x between Xo and X the-

expression uvdx lies 'b&ivr&e.n Avdx and Bvdx, and accord-

ingly, if the sign of v does not change between the limits,.

uvdx lies between A \ vdx and B

which establishes the theorem proposed.

A"

vdx,
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CoK. If /(«) he finite and continuous for all values of a

between the finite limits Xa and X, then the integral
ft

^ f[x)dx

will also have a finite value.

For, let A be the greatest value of /(»), and S the least,

rx
then f{x)dx evidently lies between the quantities

fX rx
A dx and B\ dx',

.'. /(») dx>B{X- x^ and < ,4 (X - a;„).

97. Taylor's Vheorem.—The method of definite inte-

gration combined with that of integration by parts furnishes

a simple proof of Taylor's series.

For, if in the equation

(X\h

\dx
cx\h

/(X + A)-/(Z)=j^ /H,

we assume a; = Jf + A - z, we get dx = - dz, and also

f{x)dx = \ f\X+h-%)d%\

.-. /{X + h) -f[X) = ['/'(X + h- z)dz.

Again, integrating by parts, we have

{f'{X + h-z)dz = zf{X+h-z) + ( zf"{X + k-z)d

Hence, substituting the limits, we have

£/'(X + h-z)dz = hf[X) + r zf"{X + h-z) dz.
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In like manner,

I
s/'(Z ^h-z)d%= ^/"{X + h-z) +^jf"iX+ h -< z)dz,

whicli gives

f
* zf"{X + h-z)dz = -f"(X) +

f
* -f"'{X + h-z)dz;

Jo 2 J 2

and so on.

Accordingly, we have finally

f{X+h) =/(Z) + ^/(Z) + ^/'(Z) + . . . + ^/^"-'K^)

.{/(..(X..-.)'* (.6)
rJo

*This is Taylor's well-known expansion.'

98. Remainder in Taylor's Theorem expressed
as a Definite Integral.—^Let It„ represent the remainder
after n terms in Taylor's series, then by the preceding Article

we have

i?„=[/N(X+A-.)^. (17)

There is no difficulty in deducing Lagrange's form for

the remainder from this result.

For, by Art. 96, we have

J ol . 2 .3 .. . («-l) I .2 ... W

where U lies between the greatest and least values which
/W(X+ h - z) assumes while s varies between o and h.

* The student will observe that it is essential for the validity of this proof

(Art. 90), that the successive derived functions, /'{«),/" (*)i ^"-i should be
finite and continuous for all values of x between the liroits X and X + h.

Compare Articles 54 and 75, Diff. Calc.
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Hence, as in Art. 75, Diff. Calc. (since any value of z between
o and h may be represented by (i - 0) A, where > o and < i)

;

we have

i2„= /(»)(X+0/O
I . 2 . . . « '

where is some quantity between the limits zero and unity.

99. Bernoulli's Series.—If we apply the method of
integration by parts to the expression /(a;) rfb we get

I

f{x) dx = xf{x)- \xf{x)dx ;

.: f f(x) dx = Xf{X) -
[ f'{x)xdx.

Jo Jo

In like manner,

\y'{x)xdx=^nX) -[\f"{x) "^
Jo 1,2 Jo 1*2

Jo-' ''''1.2 I . 2.3"^ ^ '' Jo -^
^

'
I . 2.3*

and so on.

Hence, we get finally

\^f{x)dx =^/(X) - ^f{X) +_^/'(X)-&c. . . . (18)
Jo I 1.2 1.2.3

Compare Art 66, Diff. Calc, where the result was obtained

directly from Taylor's expansion.

100. Exceptional Cases in Definite Integrals.—
In the foregoing discussion of definite integrals we have sup-

posed that the function f{x), under the sign of integration,

has a finite value for aU values of x between the limits. We
have also supposed that the limits are finite. We purpose now
to give a short discussion of the exceptional cases.* They may

* The Complete iavestigation of definitb integrals in these exceptional cases

is due to Cauchy. For a more general discussion the student is referred t»

M. Moigno's Cakul Integral, as also to those of M. Serret and M. Bertrand.
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be classed as follows :— (i). 'Wheii/(a!) becomes infinite at

one of the limits of integration. {2). Wben/(a;) becomes

infinite for one or more values of x between the limits of

integration, (3). "When one or both of the limits become
infinite.

X
In these cases, the integral f{x)dx may still have a

finite valije, or it may be infinite, or indeterminate : depend-
ing on the form of the function/(a;) in each particular case.

The following investigation wiU be found to comprise the

cases which usually arise.

loi. Case in ^vlnebf(x) becomes infinite at one of
the liimits.—Suppose that f{x) is finite for all values of x
between Xo and X, but that it becomes infinite when x = X.

The case that most commonly arises is where /(«) is of

the form ,4.' . , in which i//(«) is finite for all values
{X - a;)"'

^^ '

between the limits, and n is a positive index.

Let a be assumed so that if{oo) preserves the same sign

between the limits a and X; then

\,^{x-xr-\{x-xr''\^{x-
4/{x) dx

The former of the integrals at the right-hand side is

finite by Art. 96. The consideration of the latter resolves

into two cases, according as n is less or greater than unity.

(i). Let 11 < 1, and also let A and B be the greatest

and least values of ^p{x) between the limits a and X : then,

by Art. 96, the integral

L. -^ lies between A y= r- and B y= —

.

Moreover, since n < i, we have evidently

p
^ dx _ {X - a)'-»

Ja(J:-a:)''~ i-n '

and consequently, in this case, the proposed integral has a

finite value.

[9]
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(2). Let n > I, and, as before, suppose A and B the

greatest and least values of ip{x) between a and X; then

r^^ ^'' ^^^^^^^ A]j0w^ ^^^^{"c

dx

[x-xr

Again, we have

f «?» _ I

J {X-x)" ~ {n- i)(X -«)"-'

Now 7= 7-— becomes infinite when x = X, but has a
{X - ij)"-'

'

finite value when x = a; consequently the definite integral

proposed has an infinite value in this case.

f dx
When w = I, t^Z—> ^ ~ ^°^ i^ ~ ^)- This becomes

infinite when a = X ; and consequently in this case also the

proposed integral becomes infinite.

The investigation when f{x) becomes infinite for x = Xn

follows from the preceding "bj interchanging the limits.

102. Case fvtaere f{x) becomes infinite between
the IJimits.—Suppose f{x) becomes infinite when x = a,

where a lies betweeji the limits x^ and X; then since

f{x)dx=\ f{x)dx+\ f{x)dx,

the investigation is reduced to two integrals, each of which
may be treated as in the preceding Article.

Hence, if we suppose f{x) = .
^^ '

, it follows, as in

the last Article, that f{x)dx has a finite or an infinite

value according as n is less or not less than unity.

The case in which/(«) becomes infinite for two or more
values between the limits is treated in a similar manner.
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For example, if

/(ffii) = oo, f{a^ = 00, . . . /(«„) = 00,

where a^a^ . . . an lie between the Umits X and a;,, ; then

[ f{x)dx= \ ^
f{x)dx+\ ^f{x)dx + &c. + \ f{x)dx,

each of which can be treated separately.

103. Case of Infinite liimits.—Suppose the superior

limit H to be infinite, and, as in the preceding discussion, let

f{x) be of the form . , where i/'(a;) is finite for all values

of X.

As before, we have

f{x)dx= f{x)dx + \ /{x)dx,
J Xq J Xq J a

The integral between the finite limits x„ and a has a finite

value as before. The investigation of the other integral con-

sists again of two cases.

(i). Let n> I, and let A be the greatest value of ^{x)

between the limits a and 00, then

fJ
is less than A dx

But r-i^.=_L_r_i ' 1.

The latter term becomes evanescent when X= 00 : accord-
ingly in this case the proposed iategral has a finite value.

_
In like manner it is easily seen that if n be not greater than

unity, the definite integral

f" dx

[9 a]
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has an infinite value ; and consequently

f* i^[x) dx

Ja («;-«)"

is also infinite, provided i//(a;) does not become evanescent for

infinite values of x.

Hence, the definite integral

J^{x)dai
r„ {x - a)"

has, in general, a finite or an infinite value according as n is

greater or not greater than unity : \li{x) being supposed finite,

and a-o being greater than a.

IfX become - oo, a similar investigation is applicable; for

on changing x into - x, we have

f{x)dx = -\ f{-x)dx,

in which the superior limit becomes od.

104. Principal and Cfeneral Talues of a Definite
Integral.—We shall conclude this discussion with a short

account of Cauchy's* method of investigation.

Suppose/(«) to be infinite when x = a, where a lies be-

tween the limits «„ and X; then the integral f{<c)dx is re-

'0

garded as the limit towards which the sum

\''"f{x)dx+\ f{x)dx

approaches when s becomes evanescent
; fi and v being any

arbitrary constants.

* Tliis and the four foUowing Aitioles hare been taken, with some modifica-

tions, from Moiguo's Calctil Integral.
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This value depends on the nature oif{x), and maybe
finite and determinate, or infinite, or indeterminate.

If we suppose fi = v, the limiting value of the preceding

sum is called the principal value of the proposed integral

;

while that given ahove is called its general value.
rx ^^

For example, let us consider the integral —

.

dx ,. ., \ [^ dx ['"dx— = limit ~" + —
^ Live ^ J-a^o •*

]y, X \vsj'

Here

Also, making x = - z,

'•' dx

-Xq X

Accordingly, the principal value of — is log (— 1 ; while

its general value is log (— ) + log f - j. The latter expres-

sion is perfectly arbitrary and indeterminate.

Again, let us take -r^.

As before, —„ = limit -? +
"' dx'

X'

But r^ = I-^;and^-^
J-Xo *

I I

JUE Xo
'

LfJE

I

KE

I

X'

Consequently, both the principal and the general value of the
integral are infinite in this case.
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In like manner,

— = limit of - ( -v^ - -j-^ + — -
-=5 ).

Hence the general value of the integral is infinite, while

its principal value is

It may be ohserved that the principal value of

-r is equal to

'^ dx

This holds also whenever f{x) is a function of an odd
order: i.e. when/(- x) = -f{x).

!For we havcj

r° f{x)dx=^''f{x]dx + [° .f(x)dx.

J-«o Jo J-^0

But ./(») dx = -\ f{-x)dx = \f{-x)dx;
J-*o J^o Jo

.-. p f{x)dxJ^° {/(x) +f{-x)}dx. (19)
J-:r^ Jo

Accordingly, if/(- x) = -f(x), we get

I

" /(*) ^* = o.
J-:r„

Again, if/(«) be of an even order, i.e. if/(- x) =f{x), we
have

f{x) dx= 2\ f(x)dx.
J-«o Jo

105. Singalar Definite Integral.—The difference

between the general and the principal value of the integral

considered at the commencement of the preceding Article is

represented by

fix) dx,

in whicli/(a) = 00, and c is evanescent.
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Such an integral is called by Oauchy a singular definite

integral, in which the limits differ by an infinitely small

quantity. The preceding discussion shows that such an in-

tegral may be either infinite or indeterminate.

1 06. Infinite Iiimits.—If the superior limit be infinite,

we regard

evanescent.

f{x) dx as the limit of f{x) dx, when e becomes
"0 J*o

Also f{x) dx = limit of f{x) dx when s is evanescent.

(16

In the latter case the value of the definite integral when
ju = V is, as before, called the principal value^'oi

f{x)dx.

In this we assume that/(a!) does not become infinite for

any real value of x.

107. Example.—Suppose -=^^ to be a rational algebraic

fraction, in which /(«) is at least two degrees lowering than
F{x), and suppose all the roots of F{a!) = o to be imaginary,
it is required to find the value of

r ^^-}-^F{x)_

From the foregoing conditions it follows that ~\ cannot
-T [X]

become infinite for any real value of x : accordingly the true
value of the integral is the limit of

^(^) dx
.2-Fix)
lit

when £ vanishes.
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To find tMs value, suppose Wr-r decomposed by the me-

thod of partial fractions, and let

A-B

F{z)

I ^ A + B v/- I

and
X - a - hy/- I X - a + it/- i

be the fractions corresponding to the pair of conjugate roots

a + h^y- I and a - h^^- i, of F{x) = o

;

then the corresponding quadratic fraction is the sum of

A - By/^ ^ A + B'/~i
-=. and

x - a - hy/- I x-a-v iV- i

2A (iB - «) + zBh

Again

i.e.

2Bhdx

{x - ay + h^

I

^ 2Bhdx

.J-ix-aV + b^''
lit

?2A [x - a)dx

I (x - af + W
"

{x - ay + b' '

= 2Bt&n-'(j^y,

- zttB when s vanishes.

^^° I -(^Z-^yrrAr = ^log {('»-«)' + *');

""» 2A(x -a)dx ^ ()u' (i -«v£)'+5V6'

L JL {x - ay + b'
~ °^\y^i+ afiiy + byt'

= 2^ log-, when t = o.



f°° f{0!)
Investigation of —r-^dx. 1^7

Hence ) f̂
' =2Alog[^] + 2TrB. (20)

J__L {x-ay + b' Vv
lie

Now, suppose J5'(a) to be of the degree an in m, and let the

values ofA and J5, corresponding to the n pairs of imaginary

roots, he denoted by A^, A,, . . . An, and Bi, Bi, . . . B,„ re-

fipectively ; then 'we have

I

lix

+ 2Tr{Bi + Bt+ . . . + J5„).

Again, since /(a;) is of the degree 2w - 2 at most, we have

Ai + Aa+ . . . + A„ = o.

For, if we clear the equation

/(«) _ 2Ai{x-ai) + 2BA 2An{x-an) +2-BA
Fjxj' [x-a,f + b^

+•••+
(a,_a,„)^ + j„^

from fractions, the coefficient of »"""' at the right-hand side is

evidently

2{Ai + Ai+... + A„);

which must be zero, as there is no corresponding term on the

other side.

Accordingly we have, in this* case,

{' ^.dx = 27r{B, + B, + ... + Bn). (21)

* It may te observed that when /{xj is but one degree lower thaa F{x),

the principal value of 1 ^^ dx is still of the form given in (2 1)

.
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"We proceed to apply this result to an important example.

1 08. Valae of — wben m and n are Positive
Jo I+x""

Integers, and n > m.

Let a be a root of ;»" + i =0, and, hj Art. 37, we have

Again, by the theory of equations, o is of the form

(2/i;+i)7r /— . [2lc+ i)7r
cos — + -v/- I sin i —,

zn 2%

in which h is either zero or a positive integer less than n

;

.-. a""" = cos (2A + i) + '/^i sin [ih + i) 0,

(2m + i)7r
where

zn

Hence B =—^ — ; and accordingly we have
zn

2?i + ^2 + . . . + 5„ =— {sin + sin 30 + . . . + sin (2W - 1) 0)

.

zn

To find this sum, let

jS = sin + sin 30 + . . . + sin {zn - i) ;

then

2>S'sin = 2 Bin'0 + 2 sin sin 30 + . . . + 2 sin sin [zn - i)0

= I - cos 20+ cos 20- cos 40+ . . . + cos(2?j - 2)0 - cos 2n0

= i-cos2?z0=2sin'n0=2sin'(2m+ i) - = 2 ;

B= '

sinO {2m + i)7r'

zn



Value of\

Accordingly, we have

rdx. 139

wsm
(2TO+ l)

2ft

Hence, by (19),

Jol + «"" ~
2J..I +»"" ~

2/8 . {zm+lJTr'
(22)

sm-
2W

We now proceed to consider the analogous integral

—, where m and n, as before, are positive integers,
Jo I ~ *

and n> m.

log. Investigation of

We commence by showing that

dx

-dx.

f.
= o.

This is easily seen as follows :

dx C^ dx

It i
dx

Now, transform the latter integral, by making x = -, and

we get
•• dx _ r dz

1 I - «' ~
J 1 1 -

:

dz dx

r* dx

Jo I -*

Again, proceeding to the integral

" x^'^dx



140 Definite Integrals.

we otserve that i + x and i - x are the only real factors of

I - a;'", and that the corresponding partial quadratic fraction

in the decomposition of

:is
I -X'" « ( I - a')

'

Consequently, the part of the definite integral which corre-

sponds to the real roots disappears.

Moreover, it is easUy seen that the method of Arts. 107
and 108 applies to the fractions arising from the n - 1 pairs

of imaginary roots, and accordingly

f" x^™dx^= 277(^1 + ^8 + . . . + .B».i),

J-» I - X

where J3i, Bt, . . . Bn-i have the same signification as before.

Again, since the roots of «"" - i = o are of the form

ktr J— . Ut:
cos— + a/- I sm —

,

n n

it follows, as in Art. 108, that

Bi-^ Bi + . . . + B„.i = — [sin 20+ sin 40 + .. . + sia2(M- i)0],

where 6 = ^ —, as before.
2W

Proceeding as in the former case, it is easily seen that

sin 20 + sin 40 + ... + sin 2 [n - i)

COS0 -C0S(2M- l)0 , 2OT + I
'— = cot TT.

Hence

2sin0

o^'^dx IT ,2m+i
= — cot — TT

;

2W

'

x''"'dx w . 2m+ I , .

cot T. (23)
, I - X"' 211 2n
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Again, if we transform (22) and (23) by making a'"

, 2m + I

and a = , we get
2»

smaTT

's^-'^
= TT cot arr. (24)

The conditions imposed on m and « require that a should

be positive and less than unity.

Moreover, since the results in (24) hold for all integer

values of m and n, provided n > m, we assume, by the law of

continuity, that they hold for all values of a, so long as it is

positive and less than unity.

1 10. The definite integrals discussed in the two preceding

Articles admit of several important transformations, of which
we proceed to add a few.

For example, on making m = s" in (24), we get

f' du air f* du ,

1 = — ; j^
= air cot

J 1 + M<» sin «Tr J 1 - M»
air.

If - = r, these become
a

f" du _ IT r"

J 1 + w*"
~

. tt' Jo

du ir , IT
- — cot -, (^5)

where r is positive and greater than unity.

Again

r stfda; _ p x^dx f" x"dx

Joi +«» ~J„ I +a^ Jii +«'

Now, if in the latter integral we make a; = -, we get

f aT'dx

1 + X'

" a^dx _ r» z-^di

J 1 1 + «" ~
J 1 I + s

r x"dx f «" + «-»
, , ,^
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Moreover, from (22), when n is less than unity, we have

f afdx

2 cos
2

Accordingly

2C0S-
nir

In like manner, it is easily seen that

f ' «" - ar" <?« TT , MTT— = — tan—

.

U so - or'- X 2 2

(27)

(28)

(29)

It should be noted, that in these results n must he less than
unity.

Again, transform (28) and (29) by making x = e^" and
nv = a, and we get

iflZ I Ji-UZ
e"' + e

g« + 6""=
= - sec-

'

e"= - e-^'
= -tan-. (30)

- e-" 2 2z)Tra />-ff2

We add a few examples for illustration.

EziUFLES.

" dx

^ ° («» - *»)»

^"
J (»:» + »»)(»» + -

Ans.

" 2ab(a+b)'

4. tan"fl<?9, where « lies Ibetweeii + i and - i. ,,

J rnr
2 cos—

2
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t^ 3i" + te-'» dx ,

I
— , where n> m. Ans.

Jo »"+ ar» »'

r 1 \'^ r e J\^ ~ ^ I J

mv
2n cos—

a b
2 003 - COS -

(«"»+ «-"«)(«'» + r5») 2 2
»a?. ,, , ,^x + e-uai 003 a + COS 4

Jo er* - e-ira: C03»+C0SA

It siould te otserved, that in these we must have a + i < tt.

8. Hence, when i < ir, prove that

ghx + e-5« \ / 2
cos aa; B» =

,

i:

' — «"**
, sin 5

003 axax = -

ffnx _ g-,ra: e« + 2 COS + <

Jo «"- Sin axdx=—
e-^" 2 6" + z cos 4 + 6-"

Q. I (fo. -^KS. IT cot flir .

Jo I -z a

III. Differentiation of Definite Integrals.—It is

plain from Art. 86 that the method of differentiation under

the sign of integration applies to definite as well as to in-

definite integrals, provided the limits of integration are

independent of the quantity TOth respect to which we dif-

ferentiate.

On account of the importance of this principle we add an
independent proof, as follows :

—

Suppose u to denote the definite integral in question, i.e.

let
•i

u = if>{x, a)dXf
J a,

where a and 5 are independent of a.

To find 3- let A«« denote the change in u arising from the
da

change Aa in a ; then, since the limits are unaltered,
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Am = [^(a;, a + Aa) - ^(«, a)j«&;

At« r* ^{x, a + Aa) -
(j> {x, a)

" ' Aa Ja Aa

Hence, on passing to the limit,* we have

du p d^ [x, a)

da Jo da

Also, if we differentiate n times in succession, we oh-

viously have

^i _ p d"<j>{x, a)

d^" ~
]a da"

The importance of this method will be best exhibited by a

few elementary examples.

112. Integrals deduced by Differentiation.—If

the equation

i
be differentiated n times with respect to a, we get

e'^dx = -
a

\y e-^^ = iLlll^,

as in Art. 95.

Again, from the equation

C" dx _ n-

Jcjip' +a" 2

I

ah'

we get, after n differentiations with respect to a,

r" dx TT I .3 . 5...(2» - i) I

Jo («' + a)"*^ ^22.4.6... 2n a^^i'

which agrees with Art. 94.

* Eoi exceptions to this general result the student is refcired to Sertrand's

CaUulJntigral, p. 181.
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Again, if we take o and oo for limits in the integrals (23)
and (24) of Art. 21, we get

$-"' 005 mxdx = — ;, e-^" wa. mx dx = — -,. (31)
Jo «*+wi' Jo «"+»»' ^'^

'

Now, differentiate each of these n times with respect to a,

and we get

f e-«* «" cos mxdx=(-iY f-^X ( -
"'

\
Jo ^ ' \daj \a' + m')

_ \n .cos(m + i)0

{a^ + m?) ^

f° -ar n • J Iw. sin(m+i)0
e "* a;" sm mx dm = L_ "^

'
, ,

Jo "iT^' (32)
{a^ + ni") »

where w = « tan 0. (See Ex. 17, 18, Diff. Oalc, pp. 58, 59.)

Next, from (24) we have

= IT cot
Jo i-x

air.

Accordingly, if we differentiate with respect to a, we have

m^^ logx^ it^

)
\- X sin'' air

Again, if the equation

1;

[r'iv'l

be transformed, by making y= —, it evidently gives

Jj (a + te)""
~

Ha6»'

[10]
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Now, difEerentiating witli respect to a, we have

r a^'-'dcc

{a + hxY*^ n{n + 1)0,'
b"'

If we proceed to differentiate m- i times witli regard to

a, we have

af^^ dx 1 .2 . ^ .. .{m-i) I

Jo (a + fe)*"*" w.(?j+ i)(?i + 2) . .. (w + OT - i)
' al^b"'

113. By aid of the preceding method the determination

of a definite integral can often be reduced to aknown integral.

We shall illustrate this statement by one or two examples.

Ex. I. To find

|'''log(i + sin a cosir)

Jo cos

«

Denote the definite integral by u, and differentiate with

respect to a ; then

[" cos adx ,, . , „,
= -. = n (by Art. 18).
J I + sm a cos (Bda

Hence, we get

dx log (i + sin o cosa)

cos a;1:

No constant is added since the integral evidently vanishes

along with o.

_,
I

(r"" sm mx ,
£jX. 2. M = dx.

In this case

a
fT"" cos mx dx =

du f

dm Jo

C dm , , fnC\
.-. u = a\ , = tan-» — .

]a +mr \aj

No constant is added since u vanishes with m.
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Ex. 3. Next suppose

^P°f v-^..
log(i + «"«')

Here
du C" 200^ dx

la^]^ {7TaV)(iT6^)

I V V° 2adx p zadx "1

"
«'-i'Ljo i+6V~ Jo FTfflVj

I fa \ "
.

"=6
<fef—r = T log (« + &)+ const.

To determine the constant : let a = o, and we obviously

have M = o.

Consequently, the constant is - t log 6;

r" log (i + a^a?) V , fa + b'

I + i^aj^
dx = '^log\^-

The method adopted in this Article is plainly equivalent

to a process of integration under the sign of integration.

Before proceeding to this method we shall consider the case

of differentiation when the limits a and b are functions of

the quantity with respect to which we differentiate.

114. DifTerentiation fvtaere the Iiimits are Va-
riable.—Let the indefinite integral of the expression

<p{x, a)dx be denoted by F{x, a) ; then, by Art. 91, we have

M= ^{x, a)dx= F{b, a)- F{a, a);

J a

du d . F{b, a)

•'•Tb= db
="^(*'")'

[10 a]
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du dF{a, a)

da da ^ («, «")•

Again, taMng the total differential coeflScient of « re-

garding a and b as functions of a, we have

dH_
p

da J„

du f d6(x, a) , du db du da

da db da da da

By repeating this process, the values of -z—^, -r^, &o., can

he ohtained, if required.

115. Integration under tbe Sign of Integration.—
Eetuming to the equation

M =
I

<^{x, a)dx,

where the limits are independent of a, it is ohvious, as in

Art. 87, that

uda = <^{o!} o)'^" dx.

provided a be taken between the same limits in both cases.

If we denote the Kmits of a by oo and ai, we get

I
uda =

Jag Jo L Jag

^{x, a) da dx.

or ^{x, a)dx\da= ^{x, a)da\die. (34)

This result is easily written in the form

I ^{x, a)dxda=\ <^{x,a)dadx. (35)
J agja Jajao
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These expressions are called double definite integrals, as in-

volving successive integrations witli respect to two variables,

taken Toetween limits.

It may be observed that the expression

<l>{x, a)dxda
J a„ Jo

is here taken as an abbreviation of

^{a:,a)dx\da,
Ja„LJa J

m -which the definite integral between the brackets is sup-

posed, to be first determined, and the result afterwards

integrated with respect to a, between the limits oo and oi.

The principle* established above may be otherwise stated,

thus : In the determination of the integral of the expression

<p{x, a)dxda

between the respective limits Xo, Xi, and ao, oi, we may effect the

integrations in either order, provided the limits of x and a are

independent of each other.

In a subsequent chapter the geometrical interpretation of

this, as well as of a more general theorem, will be given.

We now proceed to illustrate the importance of this

method by a few examples.

1 1 6. Applications of Integration under tlie Sign
J.

Ex. I . From the equation

a?-'^ dx = -

we get
r»i

Iff
:""' da dx -

'1 da faA— = log - .

.„ " \Oo/

* It should te noted that this principle fails -whenever ip(x, a), or either of

its integrals -with respect to a, or to x, hecomes infinite for any values of x and o
contained between lie limits of integration. The student will find that the
examples here given are exempt from such faEure.
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Hence

Definite Integrals.

^ a)«i-' - af^«

dx =='»0-
Jo logo;

Again, if we make « = e"^ in this equation, we get

Jo
cfs = logp.

"1.

Ex. 2. We have already seen that

e'^ cos mxdx =
a" + wr

Hence

e'^t/a cos jnarrfle

J. «' + «*"

or r=

_ I - /gi + «r

2 "Vao^ + m'

COS mxdx = - loff —i ;

X 2 ° \ao + m

Ex. 3. Again, from the equation

r
e "* sin mxdx =

m

we get

e"" smmxdadx =
\
— -;

Jo Ja„ Ja, «' + »*"

•. I sm ffJiJtKS = tan '( — ) - tan '
(
—

l

Jo «> \mj \mj

Compare Ex. 2, Art. 113.

If we make oo = o and oi = 00 in the latter result, we
obtain

f sin t.

Jo X

mx jT
dx = -.
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Ex. 4. To find the value of

151

e-'^'dx.

Denoting the proposed integral by k, and substituting

ax for X, we obviously have

f
e-''"'''adx = k;

Jo

Hence

But

''C"''')a.Sa

2 I + a"'

I I + iB^ 4

1 f rfa;

2 10

Hence

e-^'dx = k = ~'/^.
Jo 2

(36)

This definite integral is of considerable importance, and
several others are readily deduced from it.

117. For example, to find

(A) u =

Here

e "'dx.

du

da

-X'-- dx
' a —.

X'

Again, let 'z = -, and we get



e "'ds = u ;
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Jo «' Jo

.•. —- = - 2M : hence u = Ce~^".
da

To determine C, let a = o, and, by the preceding example,

M becomes "^^-^—

.

2

Consequently

J/
-&=^e-=''. (37)

Again, to find

(B) u =
[

^'''^"cos zbxdx.
Jo

Here

^ = - 2
I

e^'*" a; sin 25«f&,

But, integrating by parts, we have

e^'^" sin,2?/a;, ,26

.a

have

+ '£_ fef-o^^'cosaSarefo;

Hence

25
6-"°'^'' sin 2bxxdx = —

| e"*"*" cos 2ixdx.

du 2hu du 2b db
or — =-

db a' ' "" u a'

Hence u = Ce "'.

Also, when b = o, u becomes —'-,

2a

e-''°^°cos2J^&; = :^^c''"'. (38)
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Again, if we differentiate n times, with respect to a, the

equation

e-'^'dx

2^/a

and afterwards make a = i, we get

(C)

I
^^A . 3.5.^.(^.-_L) y-

Next, to find

P)

We ohviously have

r cos ma

Jo I +

° cos mzdx

ae-'^'i'^^lda--
I + a'

-i: a 6'°-" ('^^°) cos mx dx da
' cosmxdx

1 + x"-

'

But, by (38), we have

e''^''^' cos mxdx = ~— e 4a=

'

-v/i 6'°-"' ia.' da
P cosm

Jo .1 +

mxdx

Hence, hy (37), we have

" cosmxdx TT _„= -e-*".
I + a;^ 2

(39)

Again, differentiating with respect to m, we obtain

p xsinmxdx t _^

J I + a;^ 2 "
''^ •'
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Theorem of Frullani,

It

log (sin 26)dd -- log 2.

Jo 2

Again, if a = 20, we have

log (sin 2O)dO = - log (sin z)dz
Jo 2j

IT

I r* I f"^ .

= - log (sin z)ds + -\ log (sin z)dz ;

2 J
2

J
IT

but, since sin {tr -s) = sin s,

TT

log (sin s)ds = log (sin s) (?s.

Consequently
TT IT

['log (sin 26)d9 =
f
' log (sin 0)^0

;

Jo Jo

155

IT

.-. f'log(sin0)cf0 = --log(2). (41)
Jo 2

Again, to find

Here

['01og(sin0)c?0.

["01og(sin e]dd= [' (tt ^ 0) log(sin 0)^0;

.-.
f
" 01og (sin e)d9 = v flog (sin 6)de = - - log (2).

Jo 2 J 2

119. Theorem of Frullani.—To prove that
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Let u =
f

'' ^^^^ ~ ^^°^ ds ; substitute ax for z, and we get

Jo S

If we substitute 6 for a, we get

h

Jo «

.
r.^{ax)dx _ rl 0(&^^ = ,*(o) r- = ^(o) log -. (42)"
]o X ], x ^^ ' }h_x a

b

ji,^,J'tMi^M,.JiM±^^io)iog(^. (43)

Jo « J* <» \^J
a

If we suppose h = oo, we get

r^_M^:M._),^^^(^)l„gQ^
(44)

a;

h

provided -^^

—

- dx = o when h=oo.
X

b

For example, let ^{x) = cosa:, and, since the integral

h

f ' cos hx -

I dx

a

evidently vanishes when h = (x, we have

cos ax - cos SiB , , hr cos ax - cos OiB , , 6
OiK = log -.

lo « ° a
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Frullani's theorem plainly fails wlien ^{ax) tends to a

definite limit when x becomes infinitely great. The formuliB

can be exhibited, however, in this case in a simple shape, as

was shown by Mr. E. B. Elliott.*

Eor, in (42) let h = ab, and it becomes

<l)(ax)dx [" 6ihx)dx . . , (h
(45)

Again, if ^( 00) denote the definite value to which <^{ax)

tends when x increases indefinitely, then when h becomes
infinite we may substitute 0( 00) instead of <p{bx) in the
integral

dx;

in which case it becomes

h

"i dx , \ , la— = 0(00) log

On making this substitution in (43), we get

^(ax) - <j>{bx)
dx = 1^(00) - 0(0) I log (46)

Eor example, let (j>(ax) = tan"'(aa;) then we have ^(p) = o,.

and 4>(oa) = -.
' 2

Accordingly we have

tan"' ax - tan"' bx

1:
dx -r2 j&

h

^ dx

'Mt

* JEdurational Times, iS'iS- The student will find some remartdble exten-
sions of the formulae, given ahove, to Multiple Definite Integrals, by Mr. Elliott,

in the I'roceedinffs of the London Mathematical Society, 1876, 1877. Also by
Mr. Lendesdorf, in the same Journal, 1878.
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119a. Remainder in liagrange's Series.—^We next
proceed to show that the remainder in Lagrange's series

{Diff. Calc, Art. 125) admits of heing represented by a
definite integral. This result, I believe, was first given by
M. Popoff (Comptes Rendus, 1861, pp. 795-8).

The following proof, which at the same time affords a
demonstration of the series, of a simple character, is due to

M. Zolotareff :—
Let z = X + y ip{z) ; and consider the definite integral

Sn = [y<^{u) +» - u}"F'{u)du.

DijBferentiating this with respect to x, we get, by (33),
Art. 114,

iJx^ = ns^,-rr[f{x)}»F'{x).
, (47)

If in this we make w = i, we get

So = yi>{a;)F'{x) + -^;

but s„ = F{s) - F{x) ;

..F{z)^F{x)+y,t,{x)F'{x) + ^. (48)

In like manner, making « = 2, we have

2S. = y'[i,[x)rV{x) + '2'

dsi

dx I .2rfa: L J 1 . 2 dx^

Substituting in (48) it becomes

Again,



I d'si

1.2 dx^
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' d^

dx'
w)m<»)
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I d^Sa

1.2.3 ^*^

'

«s«-i = y"{^(«)}"J^(a;) +

d'^'s^ d"-

.n-i daf^ I .2 .. .11 dx"'^

Hence we get finally

dx'

{<j>{x)rVix)

I d"s„

1.2 . . . n dx"
'

mVF'{x) + &C.

. 2 . . . H \dxj [y ^(m) + « - M]"i?"(M) du. (49)

Consequently the remainder in Lagrange's series is always
represented by a definite integral.

"We nest proceed to consider a general class of Definite

Integrals first introduced into analysis by Euler.

120. Gaiunia Functions.—It may be observed that

there is no branch of analysis which has occupied the atten-

tion of mathematicians more than that which treats of

Definite Integrals, both single and multiple ; nor in which
the results arrived at are of greater elegance and interest.

It would be manifestly impossible in the limits of an
elementary treatise to give more than a sketch of the results

arrived at. At the same time the Gamma or Bulerian
Integrals hold so fundamental a ' place, that no treatise,

however elementary, would be complete without giving at

least an outline of their properties. "With such an outline

we propose to conclude this Chapter.

The definitions of the Eulerian Integrals, both First and
Second, have been given already in Art. 95.

The First Eulerian Integral, viz.,

I

«'»-'(! -x)"-'dx,

is evidently a function of its two parameters, m and w ; it is

usually represented by the notation £(m, n)

.
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Thus, we have by definition

\ a:*"-' (i - x)"-'clx = B{m, n).

[ (50)

The constants m, n, are supposed j90s«%e in all cases.

It is evident that the result in equation (14), Art. 95, still

holds when p is of fractional form.

Hence, we have in all cases

T{p+i)-pr{p). (51)

This may he regarded as the fundamental property of

Gamma Fmictions, and by aid of it the calculations of all

such functions can be reduced to those for which the para-

meter^ is comprised between any two consecutive integers.

For this purpose the values of r(p), or rather of log r{p),

have been tabulated by Legendre* to 1 2 decimal places, for

all values of p (between i and 2) to 3 decimal places. The
student will find Tables to 6 decimal places at the end of this

chapter. By aid of such Tables we can readily calculate the

approximate values of all definite integrals which are re-

ducible to Gamma Functions.

It may be remarked that we have

r(i) = i, r(o)=oo, r{-p)=oo,

p being any integer. For negative values of p which are

not integer the function has a finite value.

Again, if we substitute zx instead of «, where z is a con-

stant with respect to x, we obviously have

[ e-i^-^clx=^.
(53)

* See TraiU des Fonctiona EUiptiqiiea, Tome 2, Int. Euler, chap. 1 6.



Expression for B{m, n). 161

With respect to the Fj'rst Eulerian Integral, we hare

already seen (Art. 92) that

[ a!™-'(i - 3;)"-'rfa! =
|

«»-' (i - x)'"-^dx;

.'. B {m, n) = B [n, m).

Hence, the interchange of the constants m and n does not

alter the value of the integral.

Again, if we substitute for x, we get

[ar^Hi-x)'^^dx = r , ^""'f^,U ^ ' Jo (i+yr™

^^"""^
jo (7T^ = "^^"'''')- ^53)

"We now proceed to express B {m, n) in terms of Gamma
Functions.

121. To prove that

B [m, n] = „,
'—^'.

From equation (52) we have

r [»») = [ e-^g^a^-'cte.
J"

Hence

r (m) e-" g"-! = f e-' ("^) z™*""' «•»-' dx ;

.-. r (ot) f e-" 2"-'
rfis =

[ I

j

e-'C") 3'"*"-' ds \

«•"-'
(/.p.
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But, if s (i + «) = y, we get

I r , , rCm + n)

r a;'"-'

r(OT) r(«) = rim + n)
;^

—

^ ' ^
' ^

''

Jo (i +: j\mM»'

Accordingly, by (53), we have

„, ,
Vim) Tin) , .

B[m, n) = —V^

—

-T' (54)
^ ' ' Tim + n)

'

Again, if w = i - w, we get, by (24),

„/ \ „/ 1 f" x^'^dx w , .

Till) r(i - w) = = -. . (55)

If in this w = -, we get

r(i) = ^.
This agrees with (36), for if we make 0^ = z, we get

t{'-\

e-^'dx = - e-' z-i dz = —iSZ. (5 6)
Jo 2 Jo 2

Again, if we suppose in the double integral

x'^^if-^dxdy

X and y extended to all positive values, sub]'ect to the condi-

tion that X + y h not greater than unity ; then, integrating

with respect to y, between the limits o and 1 - x, the

integral becomes

ip ™,/ s«,j iT{m)Tin+ 1) , , ,- ar-^{\ -xYdx = - —^—5^

XT, by (54)

;

wjo
' n r(OT + w+i) ' ^ ^^^'

ff «-, ^,^ ^ T{m)T{n)
, ,

JJ
" " T{m + n+i)' ^^"

in which x and y are always positive, and subject to the cofl-"

dition x + y < 1.
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12 2. By aid of the relation in (54) a number of definite

integrals are reducible to Gamma Functions.

For instance, we have

Jo (TT^^ ~
J (I + 2/)""" Ji (I + 2')""""

Now, substituting- for y in the last integral, we get

Ji(i +2/r»^Jo(i+^)"ji(,i + y; Jo vi -r--

Hence
^ ^ , ^

r 1
a;'"-' + «"-' r(w) r(?t)

1
aa, - i^!!i±yii, (58)

Next, if wo make a; =—, we get

^m+n '

J„(i +.'e)"'^» Jo(a2/ + *)'

y'^-'^dy _ r{m) r(w)

]o (ay + &)'""' ~ a"'bT{m + n)

Again,* let x = sin'0, and we get

1:

[' »»•- (i - «)"-' rfaj = 2 [' sin'"^' d cos'"-' 0c?0

;

I

This result may also be written as follows ;

rf^V^?

(59)

W-0cos-e.^0 = I^'-?)i^. (60)
,

2 r(m + w)

sinJ"-' e cos^-' 6d9 = V ~r- (61)

* These results may he regarded as generalizations of the fomralEe given in

Arts. 93, 94, to wMoh the student can readily see that they are reducible wheo
the indices are integers.
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If we make q= i, we get

sitf-' ede = ^^ y ,
. (62)

2 jp + 1\

Again, if^ = y in (61) it becomes

' ^7} =
I
'sin?-' fl cosP-' 0d9 = 4-r f'sia?"' 20rf0.

2r(i?) Jo 2P-'\„

Let 20 = z, and we have
IT IT

rsin''-'29rf0 = i sin''-'3«?z = Tsin^'-'acfz

Jo 2 Jo Jo

^ y^ Kzl

If we substitute 2m iorp, this becomes

rwr(m + i)=^r(2m). (63)

Again, make p = tan'S in (59), and we get

n 8in'"^'ecos°"-'0rfg r{m)r{n)

J (a sin" 6/ + * cos' 0)'»«' "
2a"' 6" r{OT + «)' ^

"^^

123. To find the Value* of

\n) \nj \nj ' ' ' \ n )'

n being any integer.

* Tliis important theorem is due to Etder, by whom, as already noticed, the

Gamma Functions were first investigated.
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Multiply the expression by itself, reversing tW order of

the factors, and we get its square under the form

that is, by (55),

sm — sm— sin— ... sin
n n n n

To calculate this expression, we have by the theory of

equations

1 - of

IT ,V 2n- A / (w-l)7r ^,
I -2a;cos-+a;'' i -2a;cos

—

+x- )...( i -2a:cos^ '—+X'- 1.

n J\ n

Making successively in this, » = i,- and x = - i, and re-

placing the first member by its true value n, we get

/ . ttV/ . 27rV ( . {n- OttVw = 2 sin — 2 sin -—
I

. . . 2 sm -^ — ,

\ 2nj \ 211) \ 2n J

TrVf 2,rY / (n-i)7r-
w = 2 cos — 2 cos — 1 ... 2 cos

2Hj \ 2nJ \ 211

whence, multiplying and extracting the square root,

„ ,
. 77 . 277 . (m - 1)77

n = 2""' sm — sm — ... sm ^—.
n n n

Hence, it follows that
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124. To find the values of

e'^'^cos Ja;«"'"'fl&, and e''"'sva.hxx"^^dx.

If in (52) a - b'^- i be substituted* for z the equation

becomes

[a -h v^- I (a" + h'Y

Let a = (a' + 6°) cos Q, then 6 = (a' + 6^) sin 0, and the

preceding result becomes

[
e^*0cos hx + y/- I sin hx)x^'^dx

T{m)
(cos + y- I sin 0)"

= ^—-4; (cos mQ + -y- 1 sm mv).

{a- + h'-y

Hence, equating real and imaginary parts, we have

r (m)
e^" COS bxx^''^clx

e-^'siabxxf^'^dx

cos md

(a' + bj

T{m)
> (66)

sin mO 1

{a' + b'f J

in which = tan~M -

If we make a = o,B becomes -, and these formulae beoomo
2

* For a rigorous proof of the Tiilidity of tHa transformation the student is

referred to Serrett's Calc. Int., p. 1 94.
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cos Ja!®""' dx = ,

'
cos — , 1

Jo 6'" 2 '

I

I • I „ , 7 T{m) . mir \

I sm hxx"^^ dx = ,„ sm— !

r (w) . mjT

It may be observed that these latter integrals can be ar-

rived at in another manner, as follows :

—

Erom (52) we have

COS hz i

*"

r (n) —;^ = e~'"' a;"-' cos bz dx ;

„ , . f
°° cos J2& I " r

"

.-. r(w) ;;
—

=

e-"' COS bzx'^'dxdz.
Jo K Jo Jo

But, by (32), we have

cos bz dz =I g-xs _
Jo

—— 6» + a^'

f

"

cos Js& I
C
" IB" rfiK

Jo 2" "T>)Jo s^T^"

r(«) WTT 1„/ „x
^ '' 2C0S— , by (27),

in which n must be positive and < i.

In like manner we find

sin bz dz 6""'

r in) . WTT
^ ' 2 sm —

2

The results in (67) follow from these by aid of the relation

contained in equation (55).
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EZAHFLES.

r(,4.)r(—

)

1 a!«-i(i _ a;)»-i(&; r(»j) r(«)

(a + a:)

rove that

f' x^dx [! ^
Jo(i _ a;4)J Jo(i + g^)\ ly/j

IOD
1^

COS (is") <?3.

:)">'' " o» (I + a)'»r(ffi + n)

3. Prove that

fi x^dx r^ dx IT

P—JoVi
f smbx

'
1

r(» + i)cos ( M -

1

"
f,

•

dx Y IT \n)
))

*

» /I i\

dx.
X

123. STumerical Calculation of Cramma Func-
tions.—The following Table gives the values of log T{p),

to 'six decimal places, for all values of p between i and 2

(taken to three decimal places).

It may be observed that we have r(ij = r(2) = i, and
that for all values of^ between i and 2, t(p) is positive and
less than unity ; and hence the values of log T {p) are negative

for all such values. Consequently, as in ordinary trigono-

metrical logarithmic Tables, the Tabular logarithm is obtained

by adding 10 to the natural logarithm. The method of

calculating these Tables is too complicated for insertion in

an elementary Treatise.





Logr(p).



Examples.

Examples.

|„ / • Ans. z\/a.Jo Y a-a; ^

2. If /(a!) =/(» + *) for all values of x, prove that

I»a
ra

f{x)dx = n I f{x)dx,

where « is an integer.

dx

i:

i:

yax - 3;*

dx

x-yx^ — I

5.
I

sin-' a; «?ar.

J

•'»(i+a;)v/l + 2a;-a;2 " i,^'2

f " <?« , , . . . B-
7- —;—I

;, 00 ~ Ifi being positive. „ .

8. Prove that

Idx _ " y
a + 2Ja;' + osfi

' I/^' '"''^ere A = 2 (^/ae + {).

fir dx .
^

. Ans. —
I + — "

10. F-
Jo I +

COS COS X sin 9

dx fl

cos 8 cos a! sin. 9

dx jr

«- sin^a: + 4- cos- a; 2aA

Jo (a- siu2a;-t-4-cos-a;)^
" 48^45
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)<• X ir'a
+ —

.

4

14. I , a> 0. „ .

J-i (a-*a;)A/l-ic2 -/ a^ - h^{a — bx) »y \ — x^

dx
15- - ,

i<^-/(x-a)(P-x)

, , f sin (7a; COS te , ir ,. ^, ,

17. Show that 1 dx = -, or o, aocording as o > or< *; and
io X 2

that when = i the value of tiie integral is -.

4

r*i (?x
, > 1 , A + V'aA

18. «i<ri. ><«»—-— log —.]
J.i\/(i-2«a; + «2)(l-2ix + A«)' y«4 \i-'/ab)

n

19. r tan' a; (St. ,> 2\S'~2)'

I + cos^a; 4 y/j

21. If every infinitesimal element of the side e of any triangle be divided

hy its distance from the opposite angle G, and the sum taken, show that its

value is

logf cot— cot — j.

22. Being given the base of a triangle ; if the sum of every element of the

base multiplied by the square of the distance from the vertex be constant, show
that the locus of the vertex is a circle.

r^ cos' fl sine <?9 , 1 tau-'«
' Am. — - -53

cos^

e' cos-e

'

e^ ^

24.
f 2 cos' 9 sin 9rf9 y/i +«' _ log (e 4- \/i + e')
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25. Deduce the ezpansions for sinx and cosx fiom SemouUi's series.

26. Show that the integral

Jo

can te imiuecliately evaluated by the method of Art. I J r, when m ia an integer.

27- , ' uiHS. - log (i + «).

j8. Find the value of

flog (I - 2a cos a; + ffl') dx,

distinguisHng between the cases where « is > or < i

.

Ans. a < I, its value is o.

„ B > I, its value is ztt log «.

29. lif(^x) can be expanded in a series of the form

flo + «i cos a; + «2 cos 2a; + . . . + a„ cos «a: + . . . ,

show tbat any coefScient after Oq can be ezHbited in the form of a definite

integral.

2 fir
Ans. 8n = — I /Mcosnxdx.

30. Find the analogous theorem when/(a:) can be expanded in a series of
sines of multiples of x ; and apply the method to prove the relation

(sin 2a; sin 3a; , \
sin a; + &o. 1

,

as/'
when X lies between + jr.

31. Prove the relation

"V^sinfl

32. Express the definite integral

f? de n
. /-:—-^\.Ysmede = 7r.

•'0.%/ smfl JO '

fa" de

•'''V I — K-sin

<i.

-'l(-(^"-*(^r-*(^f^f)«•*''•)•

"v/i — K'-sin'9

in the form of a series, k being < i.
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ri Iog(i + cosacosa;)rfg ^^ Iful^aA
^^'

Jo cosa;
'

"2X4 /

I"

rt' — 4'

-i!e-"»cos terfa;, where a > o. „ . „ .jr^-

36. ("log (a' cos' 9 + J8« sin' 6) (?9. „ ir log ^-—

.

Jo

" J (i _ aS)*'
" 3

i:
39-

(I - x")' « sm -

f coa rxdx "«''

I — 2BC0sa + a'

41. Find the sum of the series

n n n
I
+ __« . _9 + -.9. , -2 + • • + ~~2*

•when n is increased indefinitely.

This is evidently represented hy the definite integral

!^ dX IT

J I + »- 4

42. Find the limit of the sum

I I

, - + . + , (..+ .

"when » = oc, ^ns. —

.
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43. Prove that

IT IT

fa" , m(m- r) [2 „ _

1 cos™* cos nx dx = —5 ^ I cos"'-" x cos nxax
;

Jo m^ - »M

and hence, deduce the values of the integrals

I" cos2»'a; cos(2« + i)a;(?j;, and I co3'"'+' a; cos 2«3; <&;,

when m and n are integers.

44. I log(i - 2a oosfl + a') cos«fl«!9, when a'' < I. Am.
Jo

f" '^^^
45. 1 cos —a^. „ 1.

J -« 2

47. Prove the following equation :

; -„ ^ = , Tr-\ (i - 2a cose + a'')''-'rf9.

Jo (I - 2a cos 8 + «»)» (i - ffi2)»-i Jo
'

48. Prove the more general equation

fir sin^flrffl _ ' ["

Jo (i - 2a cos 9 + a^)"
~ U - a^)*"-"*-! J o (i - :

sva.'"9dB

(i - 2a cos 9 + a^)n (i - b2)2»-">-i Jo (i - 2a cos 9 + a2)i*">-»'

in which »j + i is positive.
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CHAPTEE VII.

AKEAS OF PLANE CURVES.

126. Areas of Curves.—The simplest method of regarding
the area of a curve is to suppose it referred to rectangular

axes of co-ordinates; then, the area included between the

curve, the axis of x, and the two ordinates corresponding to the

values x^ and Xi of x, is represented by the definite integral

r ydx.

For, let the area in question be represented by the space

ABVT, and suppose 5F divided into w equal intervals, and
the corresponding ordinates drawn,
as in the accompanying figure.

Then the area of the portion

PMNQ is less than the rectangle

pMNQ, and greater than PMNq.
Hence the entire areaABVT is

less than the sum of the rectangles

represented hypMNQ, and greater

than the sum of the rectangles

P3INq ; but the difference be-

tween these latter sums is the sum
of the rectangles Pp Qg, or (since the rectangles have equal

bases) the rectangle under MJV and the difference between
TV and AB. Now, by supposing the number n increased

indefinitely, MJV can be made indefinitely small, and hence

the rectangle MIf {TV - AB) also becomes infinitely small.

Consequently the difference between the area ABVT and
the sum of the rectangles PMNq becomes evanescent at the

same time.



Areas of Curves. 177

If now the co-ordinates ofP be denotedby x and t/, and M]}f
by A;», it follows that the area AS VT is the limiting value*

of S(y Ax) when the increment A* becomes infinitely small

;

pi
or area ABVT = ydx; where «! = OV,Xd= OB.

Ja;o

It should be observed that this result requires that y
continue finite, and of the same sign, between the limits

of integration. .

If y change its sign between the limits, i.e. if the curve

cut the axis of x, the preceding definite integral represents

the difference of the areas at opposite sides of the axis of x.

In such cases it is preferable to consider each area sepa-

rately, by dividing the integral into two parts, separated by
the value of x for which y vanishes.

The preceding mode of proof obviously applies also to

the case where the co-ordinate axes are oblique ; in which
case the area is represented by

f»i
sm w y dx,

where oi represents the angle between the axes.

In applying these formulse the value of y is found in

terms of x by means of the equation of the curve : thus,

if y =/{x) be this equation, the area is represented by

\/{s!)dx,

taken between suitable limits.

Conversely, the value of any definite integral, such as

- jyix)dx,

may be represented geometrically by the area of a definite

portion of the curve represented by the equation

y ==/W-
* This demonstration is substantially that giyen by Newton (see Prineipia,

Lib. I., Sect, i., lemma 2) ; and is the geometrical representation of the result

establi^ed in Art. go.

The modification in the proof when the elements of SV axe considered
unequal, but each infinitely small, is easily seen. It may be remarked that the
result here given is but a particular case of the general principle laid down in

Arta. 38, 39, Dif. Cale.

[12]
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On account of this property the process of integration was
called, by Newton and the early writers on the Calculus,

the method of quadratures.

Again, it is plain that the area between the curve, the

axis of y, and two ordinates to that axis, is represented by

^xdy,

taken between the proper limits : the co-ordinate axes being

supposed rectangular.

We proceed to illustrate this method of determining

areas by a few applications, commencing with the simplest

examples.

127. The Circle.
—

^Taking the equation of a circle in

the form

x^ + y'' = a^, we get y = ^/c? - »%

and the area is represented by

c?

taken between proper limits.

For instance, to find the area of

the portion represented by APBE
in the accompanying figure. Let
x = a cos, 0, then the area in ques-

tion plainly is represented by

Fis.

a" sin' = — (o - sin a cos a) ; where a = L DOA.

This result is also evident from geometry ; for the area

BPAE is the difference between DPAC and BCE, or is

a'a fis'sma cos a

The area of the quadrant ACB is got by making a = -
;

and accordingly is — : hence the entire area of the circle

is jra'.
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128'. The Ellipse.—From the equation of the ellipse

I + 1 = I, we get'y = - y^f:^J^^

and tte element of area is

b
.

h
but this is - times the area of the corresponding element of

a
the circle whose radius is a : consequently the area of any

portion of the ellipse is - times that ofthe corresponding part
d

of the circle. This is also evident from geometry.

The area of the entire ellipse is irab. —
Again, if the equation of an ellipse he given in the form

ttCA^ + By^ = C,. its area is evidently

As an application of ohlique axes, let it he proposed
to find the area of the segment

of an ellipse cut off by any chord

Djy.
Draw the diameter AA', con-

jugate to the chord, and B^
parallel to it. Then, C being
the centre, let

CA' = a', CB' = b',ACB' = o,,

and the equation of the ellipse is -^ + ^ = i ; hence the area

DA'iy is represented by

h' . fc^' /-
2 — sin w va'^ - a?dx- a'b' sin w (a - sin o cos a),
a i CE

CE
where cos a = -r—,.

CA
Again, a' J' sin w = ab, by an elementary property of the

ellipse, a and 6 being the semiaxes.

Hence the area of the se^ent in question is

ab{a - sin a cos a).

[12 a]
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This restilt can also be deduced immediately from the

circle by the method of orthogonal projection.

It may be observed that if we denote the area of an elliptic

sector, measured from the axis major to a point whose co-

ordinates are x, y, by S, we may write

X ZS ?/ . 2(S
- = cos —r = cos a,
a ab b ab

sma.

129, The Parabola.—Taking the

equation of the parabola in the form

y* = px, we get y = vpx.

Hence the area of the portion APN is

r 2,2
p^ a^dx, OT- pix^fi.e. — oBi/.

Consequently, the area of the seg-

ment PAF, cut ofE by a chord perpen-

dicular to the axis, is \ of the rectangle

TMM'F.
It is easily seen that a similar relation holds for the seg-

ment cut off by any chord.

More generally, let the equation of the curve be y = oai",

where n is positive.

Fig 4.

Here ydx = a x^dx
ax"

+ const.
« + I

If the area be counted from the origin, the constant

vanishes, and the expression for the area becomes

aa^*'^ xy--—, or -^—.
» + I w + I

Hence, the area is in a constant ratio to the rectangle

under the co-ordiuates. A corresponding result holds for

oblique axes. The discussion, when n is negative, is left to

the student.

Example.

Express the area of a segment of a parabda cut ofl ty any focal chord in

terms of I, the length of the chord, and^, the parameter of the parabola.

Am. -g-.
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130. The Hyperbola.—The simplest form of the
equation of a hyperbola is where the asymptotes are taken
for 00-ordinate axes ; in this case its equation is of the form
xy = <?.'

Hence, denoting the angle between the asymptotes by a>,

the area between the curve and an asymptote is denoted by

& sin a> —, or & sin w log ( — ),

where Xi and jSo are the abscissse of the limiting points.

If the curve be referred to its axes, its equation is

X' y

and the element of area ydx becomes

- '/(^ - aj^dx.
a

Hence the area is represented by

- '/x' - c^dx,

taken between proper limits.

v'a Wa^ -

Also, integrating by parts, we have

v^a;" - d'dx = x ^a? -d^ -\ —
.

Adding, and dividing by 2, we get

1
'/i^ — a^dx =

-/«'- dx

Yx' -a'

•/xX-J X' ffl «% , /—
log (« + v' iB - a').



182 ^ Areas of Plane Curves.

Accordingly, if we suppose the area counted from the

summit A, we have

^Pi\r = A ^y^rzi^ _ ^ log f^±^^?I?)
2a ^ 2 ^ V « ^

= *l^_^^ogf%f'
2 2 °\a b

Again, since the triangle CFIf = ^a^, it follows that

sector ^^P = ^ log g+|\
For a geometrical method of finding the area of a hyper-

holic sector, see Salmon's Conies, Art. 395.
130(a). Hyperbolic Sine and Cosine.—If 8 repre-

sent the sector ACP, the final equation of the preceding

Article becomes

which may also be written

« '/ -
- + T = « '

a

introducing a single letter v to denote the quantity

, /« y\ 28

^'^[a-'D^vr'-
Hence, by the equation of the hyperbola, we get

__ ;L — p-^
1.
~ " '

a

Thus, in analogy with the last result of Art. 128, calling the

following functions the hyperbolic cosine and hyperbolic

sine of v, and for brevity writing them cosh v, and sinh v,

e* + e"" = 2 coshi), e* - r" = 2 sinht;, (2)

the co-ordinates of any point on the curve are

- = cosh V = cosh—r, T- = sinh v = sinh —r.
a ab ab
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We might have treated the matter differently By intro-

ducing the angle defined by the equation » = a see <j>, and
therefore y = b tan (for the geometric meaning of this

transformation, see Salmon's Conks, Art. 232) ; whence (i)

may be written*

28 . . (^—r=v= log tan - +
ab ° \4

and we see that the hyperbolic cosine of a real quantity is the

secant, and the hyperbolic sine the tangent of the same real

angle. Also, since

sinh V I.I cosh v
sind» =—^— , cos i4 =—^—, cot d» = —:—,—, cosec 4) = -;-T—

,

cosh V cosh V smh v "^ smh v

we can obviously extend the names of the other trigonometrical

functions likewise. Again, putting in (2) for v, uy - i, or

iu, they become, by Art. 8,

cos u = cosh iu, i sin u = sinh iu.

131. The Catenary.—If an inelastic string of uniform'

density be allowed to hang freely from two fixed points, the
curve which it assumes is called the Catenaiy.

Its equation can be easily arrived

at from elementary mechanics, as fol-

lows :

—

Let V be the lowest point on the

curve; then any portion VP of the

string must be in equilibrium under
the action of the tensions at its ex-

tremities, and its own weight, W.
Let A be the tension at F; T that

at P, which acts along PB, the tangent at P; lPRM = 0.
Then, by the property of the triangle of force, we have

W:A^PM:RM;

* Wten ^ is lelated to « by this equation, (j> is what Professor Cayley
{Elliptic Functions, p. 56) calls the gudermannian of v, after Professor Guder-
mann, and writes the inverse equation tj> — gdv.
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Again, if s be the length of VF, and a that of the portion

of the string whose weight is A, we have, since the string is

uniform,

W^a'-;

.'. s = a tan0.

This is the intrinsic equation of the catenary.

Calc, Art.' 242 (a).) *.

Its equation in Cartesian co- . V

( ordinates can be easily arrived at. ^
For, on the vertical through V

take VO = a, and draw OX in the

horizontal direction, and assume
OX and OP" as axes of co-ordi-

nates. Let

(Diff.

then

PN=y, OIf = x,

dx
= tan (p,

rig. 7.

di/
= sm 0,

d-x

ds
= cos ;

sin rf> dx

Hence

dy dy dt

d(p ds d^ cos'0' dcj) cos(j>'

y = a seotp, x = a log (sec <j> + tan
(f). (3)

No constant is added to either integral, since y = a, and

X = o, when = 0.

From the latter equation we get

also

sec <p + tan = e"

;

sec - tan
sec (p + tan <p

= e

Hence, we have XX X

2 sec = e" + e ", 2 tan ^ = e"
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Consequently,

y =-[&" + e"). \ (4)

Also s = -{e''-e
"J. (5)

In the notation of last Article these equations may he
written

y , X . s . t <e
- = cosh - and - = sinh -.
a a a a

Again, if NL be drawn perpendicular to the tangent at

P, we have

NL = FN cos ;
.-. NL = a. (6)

Also FL = iVZ tan ^ ; .-. FL = s = FV. (7)

The area of any portion VFNO is

a r

2]^

X- f X

€" + 6 '']dx:== -[^ -e ''] = a{y' -a')K (8)

Accordingly, the areaVFNO is double that of the triangle

PNL.

EXAMFLES.

r. To find the area of ttie OTal of the parabola of the third degree -with a
double point

cy2 = (a; -«)(«- bf.

. A,
The area in question is represented by «

V C Jo

Let « — o = a', and we easily find the aiea* to be
3 • 5 c'

z. Find the whole area of the curve e^y' — ifi {2a - x). Arts. rifl.

3. Find the whole area between the cissoid »' — y'{a~ x) and its asymptote.

af= _

* The student will find little difficulty in proving that this area is ——
times the rectangle which circumscribes the oval, haviag its sides parallel to the

co-ordinate axes.
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Since !i; - o = o is the equation of the asymptote the area in question is re-

presented by

J (» - »)'"

Let X = asm' 0, and this becomes

-I
za^ am^edS:

hence the area in question is | ttu'.

4. Find the area of the loop of the curve

oV = «<(« + a;).

This curve has been considered m Art. 262, DifF.
Calo. Its form is exhibited in the annexed figure ; and
the area of the loop is plainly

2 ro

Let i + x= z^, and it is easily seen that the area
in question is represented by

S.hi

3-S-7.
Kg. 9-

J. Find the area between the witch of Agnesi

xy'' = 4a' (2a - x)

and its asymptote. jini. 4ira'.

132. In finding the wbole area of a closed curve, such as
that represented in the figure, we
suppose lines, PM, QiV, &c., drawn
parallel to the axis of y ; then, as-

suming each of these lines to meet
the curve in but two points, and
making PM = p^, P'M = y,, the
elementary area PQQ'P" is repre-

sented by (ys - yi) dx, and the en-

tire* area hj
rOB'

JOB
in which OB, OB^ are the limiting values of x.

* This form still holds when the axis of x intersects the curve, for the ordi-

nates below that axis have a negative sign, and (yt — yi) dx will still represent

the element of the area between two parallel ordinates.

MN BTX
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For example, let it be proposed to find the whole area of

an ellipse given hy the general equation

««' + zhxy + by^ + 2gx + zfy + c = o.

Here, solving for y, we easily find

y^-y^ = r -/(A' - ah) a? + 2 {lif- bg) x+p - be.

Also, the limiting values of « are the roots of the quadratic

expression under the radical sign.

Accordingly, denoting these roots by a and j3, and observ-

ing that K' - ab is negative for an ellipse, the entire area is

represented by

Z'/ab -W-
v/(« - a)(j3 - x)dx.

m

b

To find this, assume « - a = (j3 - a) sin*0 ;

then /3 - iB = (]3 - a) cos^0,

and we get

I

-/(»- a) (/3 -«;)<?« = 2 (]3 - af \
sin»0 eos'0

J a Jo

. . .„ „ (h/-bgy+(f-bc){ab-h')
Again, 0-«)' = 4-

^^
(i -V "

4b(aJ^ + bg" + ch' - ifgh - abc)

Hence the area of the ellipse is represented by

Tr{af' + bg" + ch" - ifgh - abc)

Jab - hy
This result can be verified without difficulty, by deter-

mining the value of the rectangle under the semiaxes of an
ellipse, in terms of the coefficients of its general equation.

It is worthy of observation that if we suppose a closed

curve to be described by the motion of a point round its en-

tire perimeter, the whole inclosed area is represented by J ydx,

takenfor every point around the entire curve.
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Thus, in tlie preceding figure, if we proceed from A to A'
along the upper portion of the curve, the corresponding part

of the integral \ydx represents the area APA'B^B. Again,
in returning from A' to A along the lower part of the curve,

the increment dx is negative, and the corresponding part

of / «/cfe is also negative (assuming that the curve does not

intersect the axis of x), and represents the area A'P'ABB',
taken with a negative sign. Consequently, the whole area of

the closed curve is represented by the integral / ydx, taken

for all points on the curve.

The student will find no diflSculty in showing that this

proof is general, whatever he the form of the curve, and
whatever the number of points in which it is met by the

parallel ordinates.

To avoid ambiguity, the preceding result may be stated as

follows :

—

The area of any closed curve is represented hy

taken through the entire perimeter of the curve, the element of the

curve being regarded as positive throughout.

The preceding is on the hypothesis that the curve has no
double point. If the curve cut itself, so as to form two loops,

f dx
it is easily seen that y— ds, when taken round the entire

perimeter, represents the difference between the areas of the

two loops. The corresponding result in the case of three or

more loops can be readily determined.

133. In many cases, instead of determining y in terms of

X, we can express them both in terms of a single variable,

and thus determine the area by expressing its element in

terms of that variable.

For instance, in the ellipse, if we make a; = a sin 0, we
get y = b cos <j), and ydx becomes ab oos^(j> df, the integral of

which gives the same result as before.

In like manner, to find the area of the curve

(0.;^f = -

Let x = a sin=0, then y = b cos'^, and ydx becomes

3aisin^0 cos* (j>d(^

:
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hence the entire area of the curve is represented by

189

Jo
\zab\ aiTx'(j> COS*fdf = -irab..

Examples.

Find the whole area of the evolute of the ellipse

^ + 75 = 1- Ans.
37r(a2 - «2)2

2. Find the whole area of the curve

0^"^^-(l)

2

2llH

2.4.6 2{m +n+ 1)

134. The Cycloid.—In the cycloid, we have (Diff.

Oalc, Art. 272),

a; = a (S - sin 6), y = a (i - cos 0) ;

(i - cos0)^rf9 = 4a^ [
.0

ydx = a" sm* de.

Taking B between o and tr, we get 3n-a' for the entire

area between the cycloid and its base.

The area of the cycloid admits also of an elementary
geometrical deduction, as follows :

—

It is obviously sufficient to find the area between the

semicircle BPB and the semi-cycloid BpA. To determine

this, let points P and P' be taken on the semicirolo such that

arc BP = arc JDP' : draw MPp and M'P'p' perpendicular to

BB. Take MN and M'N' of equal length, and draw Nq
and N'4i also perpendicular to BI): then, by the fundamen-
tal property of the cycloid, the line Pp = ^re BP, and P'p
= arc BP" : :. Pp -v P'p' = semicircle = ttb.
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Now, if the intervalMN be regarded as indefinitely small,

the sum of the elementary areas PpqQ dio.i.P'p'q'Q' is equal

to the rectangle under MN and the sum of Pp and P'p', or to

ira X MN.
Again, if the entire figure be supposed divided in like

manner, it is obvious that the whole area between the semi-

circle and the cycloid is equal to Tta multiplied by the sum of

the elements MN, taken fromB to the centre 0, i.e. equal to jra".

Consequently the whole area of the cycloid is Srf, as

before.

The area of a prolate or curtate cycloid can be obtained

in like manner.

135. Areas in Polar Co-ordinates.—Suppose the

curve APB to be referred to polar co-ordinates, being the

pole, and let OP, OQ, OJS represent consecutive radii vectores,

and PL, QM, arcs of circles described with as centre. Then
the area OPQ = OPL + PLQ; but
PLQ becomes evanescent in com-
parison with OPL when P and Q
are infinitely near points; conse-

quently, in the limit the elemen-
r''dS

tary area OPQ = area OPL = ;

r and being the polar co-ordi-

nates of P.
Hence the sectorial area AOB

is represented by

r'de.

where a and |3 are the values of corresponding to the limit-

ing points A and B.

136. Area of Pedals of Ellipse and Hyperbola.—
For example, let it be proposed to find the area of the locus

of the foot of the perpendicular from the centre on a tangent

to an ellipse.

Writing the equation of the ellipse in the form

the equation of the locus in question is obviously

r' = fl^cos^fl + ¥ ain'O.

a^ ¥
= 1,
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Hence its area is

cos'ede + - siu'edd = =^-^ e + —^ sine cos 0.

2 J 44_
2

The entire area of the locus is

2 ^ '

The equation of the corresponding locus for the hyperbola

is

}•» = a' eos'O - W ein'(?.

In finding its area, since r must he real, we must have

a'coa'd - 6" sin" positive : accordingly, the limits for are o

and tan"^T.
b

Integrating hetween these limits, and multiplying by 4,

we get for the entire area

ab + Uf - 6") tan"' 7.

In this case, if we had at once integrated between = o

and 6 = 27r, we should have found for the area (a' - 6") -.
2

This anomaly would arise from our having integrated

through an interval for which r^ is negative, and for which,

therefore, the ;oorresponding part of the curve is imaginary.

The expression for the area of the pedal of an ellipse with
respect to any origin will be given in a subse(iuent Article.

Examples.

1. Show tliat the entire area of the Lenmiscate

r' = a'^ cos 26

is a^

2. In the hyperhoUc spiral

re = a,

proye that the area bounded by any two radii veetores is proportional to the
difference between their lengths.

3. Find the area of a loop of the curye

»•' = b' cos nB. Am, —.
n
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4. Find the area of tie loop of the Folium of Descartes, whose ejuatioa ia

a? + yi = ^axy.

Transfoiming to polar co-oidinates, ve have

3» cos fl sin 9
»• = .

Bin's + cos'

9

Again, the limiting values of 9 are o and -

;

•. Area _
9®'

f

^9«'
f
2 sin' 9 cos' 9 tf9

j„ (sin' 9 + cos' 9)''

Let tan 9 = », and this expression becomes

<)d? f" u^du _ 30^

~]<t (!+«')'" 2

5. To find the area of the Lima(;on

»• = a cos 9 + i.

Here we must distinguish between two cases.

(i). Let b>a. In this case the curve consists of one loop, and its area ia

I ("2^ / - (^\
[a cos 9^+ J)2rf9= (42 +

-J
IT.

When i = a, the curve becomes a Cardioid, and the area .

(2). Let h <a. The curve in this case /

has two loops, as in the figure (see DiJi.

Calc, Art. 269), the outer loop correspond-

ing to
»• = a cos 9 + i,

the inner to

r = a cos 9 — S.

To find the area of the inner loop, we q
take 9 between the limits o and a, where

a = cos"^ ( ~ ) >
^'^^ *'^® entire area is

f"(«cos9-i)V9
Jo

= f («" cos' 9 - 2aJ cos 9 + b'^Jde

.

pig. j j,

— + J'
J
a H sin o cos o - 2ah sin a

= (^,,2)eos->^-|,,/,-ar^.
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It is easily seen that the sum of the areas of the two loops is ottained by in-

tegrating between the limits o and 2x, and accordingly is

(!-)
as in the former case.

137. Area of a Closed Cnrve by Polar Co-ordi-
nates.—In finding the whole area of a closed curve hy
polar co-ordinates we distinguish between two cases. Wlien
the origin is outside, we sup-

pose tangents OT, OT', drawn
from 0, and vectors OT, OQ, &o.,

drawn to cut the curve ; then, if

these lines intersect it in but two
points each, the element of area

PpqQ is the difference between
the areas POQ and^O^'; or, in

the limit, is ^ (n" - r^') dO, where
OP = n, Op = r,.

Hence, the expression

if{r^-r,')dd, Fig. 14.

taken between the limits corresponding to the tangents OT
and OT', represents the entire included area.

If the origin lie inside the curve, its whole area is in ge-

neral represented by ^Kri' + ri)dO, taken between the limits

0=0, and 6 = TT.

We shall illustrate these results by applyiag them to the

circle

r* - 2rc cos + c" = a'.

If the origin be outside, we have c>a, and ri + ri = 2c cos 9,

and TiT^ = c'^ - a' ; • r, - j-j = 2 '^/a' - c' sin^ 0.

Hence (n* - r/jdO = 4c cos fly^a^ - c* sin' tidO; and the

limiting values of 6 are ± sia"'-.

Hence the whole area is

cos v^a" -

[13]

c" BUT' Odd.
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Let c sin = a sin <p, and this integral transforms into

2a^ " oos'0(?^ = ira\

Again, if the origin he inside, we have c< a, and

- {r^ + r^) = a' + c' cos 20

;

.-. ["(n* + r,^) «Ze = ["(a" + c" cos ze)d9 = ira*.

The method given ahove may he applied to find the area

included hetween two hranches of the same spiral curve. As
an example, let us consider the spiral of Archimedes.

138. Tbe SIpiral of Arcbimedes.—The equation of

this curve is r = aff,

and its form, for

positive* values of 6,

is represented in

the accompanying
figure, in which
is the pole and OA
the line from which
6 is measured. Let
any line drawn
through meet the

different hranches

of the spiral in

pointsP, Q, JR,&c.

:

then, if OP=r, and
zP0-4=0,we have,

from the equation

of the ciirve, ^'"'S- 'S-

OP = ad, 0Q = a{9 + zir), OR^a{0 + 477), &o.

* It slioiJd be noted tliat when negative values of B are taken, we get for

the remaining half of the spiral a curve Bymmetiically situated with respect to

the prime vector OA.
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Hence PQ, = QR = &c., = 2a7r = c (suppose) ; i. e. the

intercepts between any two consecutive branches of the spiral

are of constant length.

Again, let 0Q = n, OB = rj = n + c, and the area between
the two corresponding branches is

^ir^'-ri')de = c r,d9+jl

Now, suppose MN and mn represent the limiting lines,

and let (5 and a be the corresponding values of d ; then the

area nNMm wiU be equal to

c\\QdQ + -\ d9 = -{fi-a){aa + a^ + c)

= '-{^-a){OM+On). '

(9)

If /3 - a = IT, this gives for the area of the portion

between two consecutive branches QE'Q' and ItF'Ji', inter-

cepted by any right line HB' drawn through the pole,

-BQ. QR', i.e. half the area of the ellipse whose semi-axes

are BQ and B'Q.

139. A.iiother Expression for Area.—The formula
in Article 137 still holds, obviously, when AB and ab repre-

sent portions of different curves.

It is also easily seen, as in Art. 132, that if a point be

supposed to move round any closed boundary, the included

area is in all cases represented by - r'dO, taken round the

entire boundary, whatever be its form ; the elementary anglo

dO being taken with its proper sign throughout.

Again, if we transform to rectangular axes by the rela-

tions x = roosO, y = r sin 0, we get

, a y ^^ "'^y ~ y^^
tan I; = -; .".—^ = r .

Hence r^dQ = xdy - ydx
;

[13 a]
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and the area swept out by the radius vector is represented by
the integral

- (xdy - ydx).

taken between suitable limits ; a result which can also be

easily arrived at geometrically.

- 140. Area of Elliptic Sector. I<ainbert's Theo-
rem.—^It is of importance in

Astronomy to be able to express

the area AFP swept out by the

focal radius vector of an ellipse.

This can be arrived at by inte-

gration from the polar equation

of the curve ; it is, however,

more easily obtained geometri-

cally.

For, if the ordinatePN be produced to meet the auxiliary

circle in Q, we have

Fig. 16.

area AFP = - x area AFQ = -{ACQ- CFQ)

ab
(u - e siuM), (10)

where u = lACQ.
By aid of this result, the area of any elliptic sector can be

expressed in terms of the focal distances of its extremities,

and of the chord joining them.
For (Fig. 17), let QFP re-

present the sector, and let

FP = p, FQ = p',PQ = S; then,

denoting by u and u' the eccen-

tric angles corresponding to

P and Q, the area of the sector

QFP, by ( I o) , is represented by

abl , . . ,.— iu - u - e(BmM - sinw

)

UNA.
Fig. 17.
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We proceed to show that this result can be written in

the form

. — {^ - 0' - (sin0 - sin^')). (ii)

where ^ and ^' are given hy the equations

. I p + p +S . 6 I Ip+p'-S
sm^ = -J , sin^ = -

J^^

—

~ .\22\fl 22\ a

For, assume that and ^' are determined by the equations

u - u' = (p - <j)', e (sin u - sin u') = sin - sin ^'. (a)

The latter gives

. U -u' U + u' . 6 - <h' + 0'

esm cos = sm ^ cos -,
2 2 -2 2

, ,, . U + U' 0+0'
or by the former, e cos = cos —.

•' 2 2

Again, since the co-ordinates of F and Q are a cos w,

b sin u, and a cos m', 6 sin u', respectively, we have

S* = a' (cos M - cos u'y + 6' (sin u - sin m')*

• 2*'~*'Y2 •
,M + m' i, jW + w^

= 4 sm^ a' sm'^ + o' cos'
2 \ 2 2 y

. u -u u
40' sm' I - e' cos' —

..,0-0 .,0 + 0'
4a' sm' i^ 21- sin -!^ ^

;

2 2

^)

~ .0 — 0.0 + , , . ,,.
.-. d = 2fl sm -—— sin -—- = a (cos - cos 0). (6)

Again, from the ellipse, we have

jO = (3!(i - eeosw), p' = a(i - ecosw'),

. . p + p = 2a -ae(cosM + cosw) = 2a — 2aeoos cos
2 2

1= 20^ - 2a cos ^ cos -—- = 2a~ a (cos + cos 0'). (c)
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Hence, adding and subtraoting (6) and (c), we get

p + p' + S , , . . A
-— = 2 (i - cos 0) = 4 sm' -,

a 2

P + p'- S , ,. . -^-— = 2(i-cos0) = 4 sin'—

,

a ^ 2

which proves the theorem in question.

Consequently, the area* of any focal sector of an ellipse can

he expressed in terms of the focal distances of its extremities, of

the chord which joins them, and of the axes of the curve.

141. We next proceed to an elementary principle which

is sometimes useful in determining areas, viz. :

—

The area of any portion of the curve represented hy the

equation

4 !)=»

is ab times the area of the corresponding portion of the curve

F{x,y) =c.

This result is ohvious, for the former equation is trans-

a

CC li

formed into the latter, by the assumption -=/,- = y' ; and

hence ydx becomes ahifdx' ;

ydx = ah y'dx'.

the integrals being taken through corresponding limits—

a

result which is also easily shown by projection.

Thus, for example, the area of the ellipse — + %: = \
a

* This remarfcatle result is an extension, by Lambert (in his treatise entitled

:

Insigniores orbita eometarum proprietates, published in 1761), of the correspond-
ing formiila for a parabola given by Euler in Miscell. BeroUn, 1743. It

furnishes an expression for the time of describing any arc of a planet's orbit, in

terms of its chord, the distances of its extremities from the sun, and tlie major
axis of the orbit ; neglecting the disturbing action of the other bodies of the

solar system.
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reduces to tliat of the circle ; and the area of the hyperbola

a? if

to that of the equilateral hyperhola x'^ -y^ = i.

Again, let it be proposed to find the area of the curve

it. + y^
V V)

The transformed equation is

(^*rt-=^-t;^

or, in polai co-ordinates,

, a" 00^9 6^ sin''

9

^ =—n— + —r~*

But the whole area of this (Art. 136) is - ( — + —
J.

Consequently the whole area of the proposed curve is

It may be remarked that the equations

represent similar curves, and their corresponding linear

dimensions are as a : 1. Consequently the areas of similar

curves are as the squares of their dimensions ; as is also

obvious from geometry.

142. Area of a Pedal Carve.—If from any point

perpendiculars be drawn to the tangents to any curve, the
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locus of their feet is a new curve, called the pedal of the
original (DifE. Calc, Art. 187). ^- ^

If p and o) be the polar co-

ordinates of If, the foot of the
perpendicular from the origin 0, ^i
then the polar element of area of

the locus described by iV is plainly ^/

, and the sectorial area of any

portion is accordinglyrepresentedby

p'diD,

taken between proper limits.

There is another expression for the area of a closed pedal

curve which is sometimes useful.

Let Si denote the whole area of the pedal, and 8 that of

the original curve ; then the area included between the two
curves is ultimately equal to the sum of the elements repre-

sented by NTN' in the figure.

Hence 8^ = 8 + ^NTW = « -i-

^
[piVVa». (12)

Again, by the preceding,

2
Olf'du,.

Accordingly, by addition.

281 = 8 + - loF'db,. (13)

It is easily seen that equation (12) admits of being stated

in the following form :

—

The whole area of the pedal of any closed curve is equal to

the sum of the areas of the curve and of the pedal of its evolute :

both pedals having the same origin.

For, P-ZV is equal in length to the perpendicular from

on the normal at P : and hence —PN'^dto represents the ele-
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ment of area of the locus described by the foot of this perpen-

dicular, i.e. of the pedal of the evolute of the original curve.

For example, it follows from Art. 136 that the area oj

the pedal of the evolute of an ellipse is -{a - by, the centre

being origin.

143. Area of Pedal of Ellipse for any Origin.—
Suppose to be the pedal

origin, and OM, OM' perpen-

diculars on two parallel tan-

gents to the ellipse ; draw CN
the perpendicular from the

centre C; let OM = p„ OM'
= p^, CN=p, OC=c, lOCA
= a, lAGN- then

Pi = MD - 0B =

Pi =p + CCOs((D - a).

Again, the whole area of the pedal is

- {p^ + p-^) du) = {jo" + c' cos" (oj - a) } d(0

= p^dto + <? cos'' (w - a) (?w = - (a' + J' + c'). (114)

Jo Jo 2

That is, the area of the pedal with respect to as origin

exceeds the area of its pedal with respect to G by half the

area of the circle whose radius is OC.
If the origin lie outside the ellipse, the pedal consists

of two loops intersecting at and lying one inside the other;

and in that case the expression in (14) represents the um of

the areas of the two loops, as can be easily seen.

The result established above is a particular case of a
general theorem of Steiner, which we next proceed to

consider. ^,

144. Steiner's Tbeorem on Areas ofPedal Curves.
Suppose A to be the whole area of the pedal of any closed

curve with respect to any internal origin 0, and A! the area
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of its pedal witli respect to another origin (/ ; then, if p and
p' be the lengths of the perpendiculars from and (7 on a
tangent to the curve, we have

2ir , riw

p'dw, A' = -\ p"da
2jo

Also, adopting the notation of the last article,

p' ==p - ccos(«j - a) =p - a;cosu) - y sinw;

where a, y represent the co-ordinates of 0' with respect to
rectangular axes drawn through 0. Hence we get

A' - A = -\ (x cosw + y smwydw
2 Jo

-a; pcoBiodu — t/\ psinwdaj.

But cos^(t)dti) = Tr, BiD!'b)dii) = Tr, sinti)COS(t)d(i) = o.
Jo jo Jo

[Sir pir

Also, for a given curve, p oosw dio &ni \ ^sinwefware..'''. .J"
constants when is given. Denoting their values hy g and
h, we have

A'-A = ~{x' + f)-gx-hi/. (i5)

This equation shows that if h^ fixed, the locus of the

origin Cf, for which the area of the pedal of a closed curve is

constant, is a circle* The centre of this circle is the same,

whatever be the given area, and all the circles-got by varying
the pedal area are concentric.

* It can be seen, -without difficulty, from the demonstration given above,
that when the curve is not closed, the locus of the origin for pedals of equal area

is a conic: a theorem due to Prof. Haahe, of Zurich. See Crelle's Journal,

vol. 1., p. 193.

The student wiU find a discussion of these theorems by Prof. Hirst in the

Transactions of the Royal Society, 1863, in which he has investigated the corre-

sponding relations connecting the volumes of the pedals of surfaces.
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If the origin be supposed taken at the centre of this

circle, the constants g and h will disappear ; and, in this case,

the pedal area is a minimum, and the difference betiveen the

areas of the pedals is equal to half the area of the circle whose

radius is the distance between the pedal origins.

For example, if we take the origin at the centre, the

pedal of a circle, whose radius is a, is the circle itself. Tor
any other origin the pedal is a limagon ; hence the whole

area of a limacon is -k(-4) as found in Art. 136, Ex. 5.

145. Areas of Roulettes on Rectilinear Bases.
The connexion between the areas of roulettes and of pedals

is contained in a very elegant theorem,* also due to Steiner,

which may he stated as follo^ws :

—

When a closed curve rolls on a right line, the area between

the right line and the roulette generated in a complete revolution

by any point invariably connected with the rolling curve is double

the area of the pedal of the rolling curve, this pedal being taken

with respect to the generating point as origin.

To prove this, suppose to be the describing point in any

Fig 20.

position of the rolling curve, and P the corresponding point
of contact. Let (X represent an infinitely near position of the
describing point, Q' the corresponding point of contact, and Q

* See Crelle's Journal, vol. xxi. The corresponding theorem of Steiner
connecting the lengths of roulettes and pedals wiU be given in the next Chapter.

By the area of a roulette we understand the area between the roulette, the
base, and the normals drawn at the extremities of one segment of the roulette.
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a point on the curve sucli that PQ = PQ[ ; then Q, is the point

which, coincides with Q' in the new position of the rolling

curve ; and, denoting the angle between the tangents at P
and Q (the angle of contingence) by cIid, we have OPC/ = dw,

since we may regard the curve as turning round P at the in-

stant (Diif. Calc, Art. 275).
Moreover, QQ' ultimately is infinitely small in comparison

with QP, and consequently the elementary area OPQ'C/ is

ultimately the sum of the areas POff and QO'P, neglecting

an area which is infinitely small in comparison with either of

these areas.

Again, if OP = r, we have POO' = —
- , and area QO'P

= QOP in the limit.

Also the sum of the elements QOP in an entire revolu-

tion is equal to the area {S) of the rolling curve. Conse-

quently the entire area of the roulette described by is

S + ii r'da,.

But we have already seen (13) that this is double the area of

the pedal of the curve with respect to the point ; which
establishes our proposition.

Again, from Art. 144, it follows that there is one point in

any closed curve for which the entire area of the correspond-

ing roulette is a minimum. Also, the area of the roulette

described ly any other point exceeds that of the minimum
roulette by the area of the circle whose radius is the distance

between the points.

For instance, if a circle roll on a right line, its centre de-

scribes a parallel line, and the area between these lines after

a complete revolution is equal to the rectangle under the

radius of the circle and its circumference ; i.e. is zira^ ; denot-

ing the radius by a.

Consequently, for a point on the circumference, the area

generated is 2Tra* + Tra^, or ^t'o' ; which agrees with the area

found already for the cycloid.

In like manner, by Steiner's theorem, the area of the or-

dinary cydoid is the same as that of the cardioid : and the

area of a prolate or curtate cycloid the same as that of a

limacon.
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Again, if an ellipse roll on a right line, the area of the

path described by any point can be immediately obtained.

For example, the pedal of an ellipse with respect to a focus

is the circle described on its axis major. Hence, if an ellipse

roll upon a right line, the area of the roulette described by its

focus in a complete revolution is double the area of the auxiliarij

circle. Also, the area of the roulette described by the centre

of the ellipse is equal to the sum of the circles described on
the axes of the ellipse as diameters, and is less than the area

of the roulette described by any other point.

146. Ceneral Case of Area of Roulette.—If the

curve, instead of rolling on a right line, roU on another

curve, it is easily seen that the method of proof given in the

last article still holds ;
provided we take, instead of dw, the

sum of the angles of contingence of the two curves at the

point P.
Hence the element of area OPff is in this case

I 01- du, (i + ^\ or - Ordw (i + ^\

where p and p' are the radii of curvature at P of the rolling

and fixed curves, respectively.

Hence it follows that the area between the roulette, the

fixed curve, and the two extreme normals, after a complete

revolution, is represented by

if-'
8+-\r''di^{i +

If a closed curve roll on a curve identical with itself,

having corresponding points always in contact, the formula
for the area generated becomes

S + Ir'dta.

In this case the area generated is four times that of the

corresponding pedal ; a result which appears at once geome-
trically by drawing a figure.
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EXAUFLES.

I. If ^ be the area of a loop of the curve r" = o™ cos m$, and ^i the area
of its pedal with respect to the polar origin, prove that

(n) A.

It is easily seen, as in DiS. Calc, Art. 190, thatthe angle between the radius
vector and the perpendicular on the tangent is »i9 ; and . •. « = («» + i) 9

Hence, by Art. 142,

2Ai = A+ ^^' Sr'de = («! + 2) A.

2. If a circle of radius i roll on a circle of radius a, and if A denote the
area, after a complete revolution, between the fixed circle, the roulette described
by any point, and the extreme normals ; and if A' be the area of the pedal of
the circle with respect to the generating point, prove that

Aa + J3b= 2(a + b)A'.

where B is the area of the roUing circle.

3. Apply this result to find the area included between the fixed circle and the
arc of an epicycloid extending from one cusp to the next.

147. lEoIditch's Theorem.*—If a line C(7' of a given
length move with its extre-

mities on two fixed closed

curves, to find, in terms of

the areas of the two fixed

curves, an expression for the

whole area of the curve gene-
rated, in a complete revolu-

tion, by any given point P
situated on the moving line.

Let CP = c, PC = c', and suppose {xi, y^, {x, y), and
{xi, 2/2) to be the co-ordinates of the points C, P, and C, re-

spectively, with reference to any rectangular axes.

Fig. 21.

* This simple and elegant theorem appeared, in a modified form, as the
Prize Question, by Mr. Holditch, under the name of " Petrarch," in the Lady's
and Gentleman's Diary for the year 1 858. The first proof given above is due to

Mr. Voolhouse, and contains his extension of Mr. Holditch's theorem.
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Then, if te the angle made hj CO' with the axis of y,

we have evidently

Xi = X - csmQ, yi = y - c cos d,

Xi = X + o' sin d, yi = y + c' cos Q.

Hence we have

yidXi = ydx - c cos {dx + ydd) + c^ooB^QdQ
;

yu(?«3 = ydx + c' cosO{dx: + ydd) + c'^ co%^ QdO.

Multiplying the former equation by c', and the latter by c,

and adding, we get

dyidxi + cy^dXi = (e + c')ydx + (c + c') ce' co&^ddQ

;

.". c' Syidxi + cjyidxi = (c + c')jydx + (c + c')cg' \co^QdQ.

If we suppose the rod to make a complete revolution, so

as to return to its original position, and if we denote by (C),

(C), (P), the areas of the curves described by the points

C, C, and P, respectively, we shall have (since in this case

the angle d revolves through iir)

c'{C) + c{C') = (c + c')[P] + TT (c + c')co',

c'{G) + c{C') ,„, , , ^,
or ^^/ = {P) + ^cc

.

(i6)

This determines the area (P) in terms of the areas (C),

{C) and of the segments c, c'.

When the extremities C, C move on the same identical

curve we have (C) = (C), and hence (C) - (P) = ttcc'.

Consequently, if a chord of given length move inside any
closed curve, having a tracing point P at the distances c and
c' from its ends, the area comprised between the two curves is

equal to vcc'.

More generally, if the extremities C, C move on curves

of equal area, we have, as before,

(C) - (P) = TTCC'. (17)

Should the extremities, instead of revolving, oscillate

back to their former positions, then (C) = o, (C) = o, and
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.'. {P) = - TTCc'. The negative sign implies that the area is

desorihed in a direction contrary to that in which the rod re-

volves.

Again, if the rod returns to its original position after

n revolutions, the limits for Q become o and znir, and equa-
tion (i 6) becomes

!^-^ = (P) + nircc

.

(i 8)

If (C) = (C), this gives

(C) - (P) = nirce'. (19)

If the line oscillate back to its former position, without
making a revolution, we have w = o, and (19) becomes

(C) = (P).
.

Hence, in this case, if two points describe curves of equal

area, then any point on the line joining these points describes

a curve of the same area.

The theorem in (16) can also be proved simply in another
manner, as foUows :

—

Let denote the point of intersection of the moving line

CC with its infinitely near position ; that is to say, the point

of contact with its envelope ; and let OP = r. Adopting the

same notation as before, let (0) represent the area of the en-

velope, and it is easily seen that

(C)-(0)=i \oa)''de=^\'' {c-rfde,
J Jo

(•2ir r2ir

{C) - (0) = i {oojde=i (/ + rYdo,
Jo Jo

(P) -(O) = ij(OP)V0=i|r=cf0;

hence
/•2ir

c'{C) +c{C')-{c + c'){P) =i {c'ic-ry+c{c'+rY-{c+(r)}^}c

= CC (c + C) IT,

as before.
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A remarkatle extension of Holditch's theorem was given

by Mr. E. B. Elliott, in the Messenger of Mathematics,

Pehruary, 1878.

Mr. Elliott supposed the length of the moving line C'C to

vary, but that it is in all positions divided in the constant

ratio m: nin a, point P.
Then, if C travel round the perimeter of any closed area

(C), and C move simultaneously round another area (C), the

two motions being quite independent and subject to no re-

strictions whatever, except that both are continuous, having

no abrupt passage from one position to another finitely differ-

ing from it, then P will travel simultaneously round the

perimeter of another closed area (P).

Adopting the same notation as before, we have

{m + n)x = mxi + nXi, {m + n)t/ = my^ + ny^
;

.'. (to + rifydx = (toj/i + ny^ {mdxi + ndx^)

= m^yidxi + n^y^dx-i + mn {y^dxi + yidx^

= [m-^n]{myidxi + nyidx-^ -mn{y,-yi)d[Xi-Xi).

Integrating for a complete circuit, and dividing by (to + n),

we have

(to + w)(P)=to(C) +«(C')
-^^^J

{y,-iA)d(x,-x,). (20)

,
This result is stated as follows by Mr. Elliott :

—

Through any fixed point in the plane of a closed area S
let radii vectores be drawn to all points in its perimeter, and let

chords AB, parallel and equal to the radii vectores, be placed

with one extremityA in each case in the perimeter of a closed

area (-4), and the other S on that of another (P) ; then, if

the points A, B, travel respectively all round the perimeters,

and do not in either case return to their first positions from
the same sides as that towards which they left them ; and, if

[14]
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{C) represent the area describedby a point always dividing^^4
in the constant ratio m : n, then the areas (A), [B), {C), {S)
are connected by the following relation

:

m + n {m + ny^ ' ^ '

This follows immediately from (20) by altering the nota-

tion.

Areas described in opposite directions of rotation must be
taken with opposite signs.

For particular modifications in this result, as also for its

extension to surfaces, the student is referred to Mr. Elliott's

paper ; as also to Mr. Leudesdorf's papers in the lame
Journal.

147(a). Kempe's Theorem.—"We next proceed to the
consideration of a singularly elegant theorem* discovered by
Mr. Kempe, and which may be stated as follows :

—

If one plane sliding upon another start from any position,

move in any manner, and return to its original position after

making one or more complete revolutions ; then every point

in the moving area describes a closed curve, and the locvs, in

the moving plane, ofpoints which describe equal areas is a circle

;

and by varying the area we get a system of concentric circles for

loci.

This result can be readily de-

duced from Holditch's theorem, for

if we suppose A, £, C, to be three

pointswhich generate equal areas ; it

can easily be seen that any fourth

point, D, which generates the same
area, lies on the circle circum-

scribing ABC.
Let AB and CD intersect in P,

then, let (P) represent the area

described by the point P, as before

;

and n the number of revolutions made before AB returns

to its original position : then we have, by (19), denoting by

Messenger of Mathematics, July, 1878.
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(C) the common area described by eaoli of the points

A, B, C, D,

(C) - (P) = uttAP . PB,

and, by same theorem,

(C) - (P) = MTT CP.PD;
hence

AP.PB^CP.PB;

consequently A, B, C, B, lie on the circumference of the

same circle.

Again, let be the centre of this circle, and join OP and
OA, then the preceding equation gives

(C) -{P)=n-rr{OA'- OP').

Hence all points which describe an area equal to that of

(P) lie on a circle, having for centre, and OP for radius,

which establishes the second part of the theorem.

Por the effect of two or more loops in the area described

by, a moving point see Art. 132.

148. Areas by Approximation.—In many cases it is

necessary to approximate to the value of the area included

within a closed contour. The usual method is by drawing a
convenient number of parallel ordinates at equal intervals ;

then, when a rough approximation is sufficient, we may
regard the area of the curve as that of the polygon got by
joining the points of intersection of the parallel ordinates

with the curve. Hence, if h be the common distance between
the ordinates, and if

Vo, yi, 2/2, &C-, Vn,

represent the system of parallel ordinates, the area of the
polygon, since it consists of a number of trapeziums of equal
breadth, is plainly represented by

' —— + ih + y% + &c. + y«-i .

[14 a]
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Hence the rule : add together the halves of the extreme

ordinates, and the whole of the intermediate ordinates, and
multiply the result hy the common interval.

When a nearer approximation is required, the method
next in simplicity supposes the curve to consist of a number
of parabolic arcs ; each parabola having its axis parallel to

the equidistant ordinates, and being determined by three of

those ordinates.

To find the area of the parabola passing through the

points whose ordinates are 2/0, 2/1, 2/2 ; let y = « + jS* + 70;* be
the equation of the parabola, and, for simplicity, assume the

origin at the foot of the intermediate ordinate y^, then we
have

y^ = a- I6h + yh\ yi = a, yi = a + |3/i + 7/»'.

Again, the area between the first and third ordinate is

r
J -A

But yo + 2/2 = 22/1 + 27A' : hence the area in question is

hi

(a + /3a; + 7«') dx =2^(0 + 7 — ).

J2/o
+ 42/1 + y^

Now, if we suppose the number of intervals n to be even,

and add the different parabolic areas, we get, as an approxi-

mation to the area, the expression

- {2/0 + 2/« + 4 («/i + 2/3+ &0.H- 2/^1) + 2 (2/3 + 2/4 + &c. +2/„_2)}.
o

Hence the rule : add together the first and last ordinate^,

twice every second intermediate ordinate, and four times each

remaining ordinate; mid multiply hy one-third of the common
interval.

We get a closer approximation by supposing the number
of equal intervals a multiple of 3, and regarding the curve

as a series of parabolas of the third degree, each being
determined by four equidistant ordinates. To find the area

corresponding to one of these parabolic curves, let 2/0, yi, yt, yi

be four equidistant ordinates, and for convenience assume
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the origin midway between yi and y^ ; then if the equation

of the parabolic curve he

y = a + ^x + yx^ + S«',

and the common interval on the axis of x he denoted hy zh,

we have

2/0 = a - 3j3/s + 97A'' - 2-]W,

2/2 = a + J3/* + yh^ + Sh^,

2/3 = a + 3J3h + gyh" + 278/*'.

Hence i/o + y,= 2{a + gy/i'), pi + y^ ^ 2 [a + yli').

Again, the parabolic area between yo and ys is

(a + /3« + ya;' + S«')cfe = 3/4(20 + 67A').

J-37»

Substituting in this the values of a and y obtained from
the two preceding equations, the expression for the area

becomes

— {yo + 2/3 + 3(2/1 + y=))-
4

If the corresponding expressions be added together, we
easily arrive at the following rule :*—Add together the first

and last ordinates, twice every third intermediate ordinate, and
thrice each remaining ordinate ; and multiply by fths of the

common interval.

It is readily seen that these rules also apply to the ap-

proximation to any closed area, by drawing a system of lines,

parallel and equidistant, and adopting the intercepts made by
the curve instead of the ordinates, in each rule.

Since every definite integral may be represented by a

* This and the preceding are commonly called " Simpson's rules " for cal-

culating areas ; they were however previously noti^gd by Newton (see Opusaila.

Method. Biff., Prop. 6, scholium) as a particular application of the method of

interpolation. By taJong seven equidistant ordinates, Mr. Weddle [Camb. and
ilub. Math. Jour., 1854), obtained the following simple and important rule for

finding the area:

—

Tofive times the sum of tlie even ordinates add the middle ordi-

nate and all the odd ordinates, multiply tlte sum hy three-tenths of the common
interval, and the product will be the required area, approximately. The proof,

which is too long for insei"tion here, will be found in Mr. Weddle' s memoir

:

and also, with applications, in Boole's Calculus of Finite Differences. The student
is referred to Bertrand's Calc. Int., 1. i, eh. xii., for more general and accurate

methods of approximation by Cotes and Gauss.
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curvilinear area, the methods given above are appHoable to

the approximate determination of any such integral.

In practice the accuracy of these methods is increased by
increasing the number of intervals.

149. Planimeters.—Several mechanical contrivances

have been introduced for the purpose of practically estimating

the area inclosed within any curved boundary. Such instru-

ments are called Planimeters. The simplest and most elegant

is that of Professor Amsler of SchafEhausen. It consists of

two arms jointed together so as to move in perfect freedom in

one plane. A point at the extremity of one arm is made a
fixed centre round which the instrument turns ; and a wheel
is fixed to, and turns on the other arm as an axis, and records

by its revolution the area of the figure traced out by a point

on this arm. From its construction it is plain that the re-,

volving wheel registers only the motion which is perpendi-

cular to the moving arm on which it revolves.

In the practical application of the instrument it^is neces-

sary that the two arms, CA and AJB, should return to their

original position after the tracing point B has been moved
round the entire boundary of the required area.

We shall commence by showing that the length registered

by the wheel while B has moved round the entire closed area

is independent of the wheel's position on the moving arm

;

i.e. is the same as if the wheel be supposed placed at the joint.

To prove this, suppose P to represent the point on the
arm at which the centre of the
revolving wheel is situated. Let
A'B' represent a new "position of

AB very near to AB, and P' the

corresponding position of the

point P. Draw PiVperpendicular
to A'B" ; then PW represents the

length registered by the wheel
while the arm moves from AB to

the infinitely near position A'B'.

Next, draw ^iV'perpendicular,
and AL parallel, to A'B'.

Let PJSr= ds', AN' =ds,AP=c,
PAL = d,t> ; then PN=PL +AN',

('-= ds + od(^.

Fig- n-

QT
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Now, if we suppose AB after a complete circuit of the

curve to return to its original position, we have oTjTiously

S {d^) = o ; and therefore S {ds') = 2 {ds),i.e. the whole length

registered by the revolving wheel at P is the same as if it

were placed at A.
Next, let X and y he the co-ordinates of B with respect to

rectangular axes drawn through G, and let ^C= a, AB = b,

L ACX= d; and suppose the angle which BA produced

makes with the axis of co ; then we shall have

X = a COS + b COS ^, i/ = a sind + b sin <p.

Hence xdy - ydx = a'rffl -k-Tfdi^^- ab cos (9 - ^) <?(9 + ^).

Also • ds = AN' = AA' sinAA'N = add cos {6 - ,j>).

But + (p = 2d-{9-<p);
.-. ab cos [6 - <f)d[Q + ^)

= 2ab cos(ff - ^)dQ - ab cos(0 - <p) d{6 -
<l>)

= 2bds - ab cos (9 ~ <p) d{0 -
(j>).

Consequently

xdy-ydx = a^dO-\- b'd(j)+2bds-ab cos [6 -(l>)d {6 -(j>).

But, hy Art. 139, the area traced out by 5 in a complete

revolution is represented by -J
{xdy-ydx) taken around the

entire curve.

Also, since AO and AB return to their original positions,

the integrals of the terms a^dQ, b'^dcp and ab cos (0-^)d{0- <p)

disappear ; and hence the area in question is equal to b8, where
S denotes the entire length registered by the revolving wheel.

On account of the importance of the principle of this in-

strument, the following proof, for b.
which I am indebted to Prof. ]3all,

based on elementary geometrical

principles, is also added.

Let C, ^, -S represent, as before, /v

the positions of the fixed centre, the

joint, and tho tracing point, respec-

tively ; and suppose It to represent

the position of the roller, or revolv-

ing wheel ; then draw CP and ItS
perpendicular to AB,
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Let AC =a, AB= b, AR = I, BC = r.

Now, if the instrument be rotated about C tbrough an
angle without altering the angle CAB, it is easily seen
that the circumference of the roller is rotated through an arc
represented by

Again, if the instrument be rotated about S through a
small angle the roller does not revolve.

Hence a curve can be drawn through B,
such that, if the tracing point B be
moved along it, the roller will not
revolve.

Now, let Au, \'n' be the two adjacent

circles described with C as centre, and
suppose aa and /3j3' two adjacent non-

rolling curves, such as just stated : and
suppose the tracing point B to move ^^°- *-5"

round the indefinitely small area aaf5l3 : then the arc through
which the roller has turned is represented by

a' + l^-f^ ^^ (^ a' + V-[r + h-y\
^^

2b

rSrSd ^aa'B'IS
= —,—- = area oi—-—

,

b

since aj3 = rS9; and Sr = aa sin /3.

Now suppose the instrument works correctly for the area

W'a'a, then it will work correctly for the area AX']3'|3 ; for,

start from a to X, X', a, then the area aXXa must be regis-

tered, since the roller does not turn in moving from a' to a

;

proceed then from a to /3', /3, a, then, by what has been just

proved, the area a'(3')3a vdll be added. Hence the instrument

will work correctly for the strip XX'/ft-

Again, suppose the instrument works correctly for the

area Xjup, then it will work correctly for X'f/p ; for suppose

we start from X to p, fi, and back to X : then start from X to
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H, ju', X' and A ; the two journeys from A to ju and fi io \
will neutralize each other, and it follows that if the instrument

works correctly for the area 'Ki^.p, it will work correctly for

the area AVp ' hence, if the instrament works correctly for

any portion of the area, however small, it works correctly for

the entire area.

The student will find a description of Amsler's Planimeter,

with another mode of demonstration, in a communication by
Mr. F. J. Br^mwell, O.E., to the British Association.—See

Eeport, 1872, pp. 401-412.
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Examples.

I. Find the whole area hetween the ouive

1 its asymptotes.
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9, Find tie area of the traetrix.

The oharaoteristio property of the traetrix is that the intercept on a tangent

to the curve hetween its point of contact and a fixed right line is constant.

Denoting the constant by a, and taking the origin at the point for which
the tangent OA is perpendicular

to the axis, we have, i" being
any point on the curve

FT=a, FN=y,

-2 = - tan i'TiV"=- ._
y JZ

. . ydx = — Yo' — y^dy.

Hence the element of the area of

the traetrix is equal to that of Fig. 26.
a circle of radius a.

It follows immediately that the whole area between the four infinite branches

of the traetrix is equal to ira^. This example furnishes an instance of oui' being

able to determine the area of a curve from a geometrical property of the curve,

without a previous determination of its equation.

If the equation of the traetrix be required, it can be derived from its differ-

ential equation

dm •-

from which we get

; + v a^ -y'i =a log

y''-d!/

a +v fl2 — 2/^

y
That the equation of the traetrix depends on logarithms was noticed by

Newton. See his Second Epistle to Oldenburg (Oct. 1676). This was, I
believe, the first example of the determination of the equation of a ourre by
integration ; or, what at the time was called the inverse method of tangents.

10. If each focal radius vector of an ellipse be produced a constant length c,

show that the area between the curve so formed and the ellipse is tc(24 + «),

b being the semi-axis minor of the ellipse.

11. Find the area of a loop of the curve r» = n" cos «8.

Ans.
"W^ \^ n)

12. If a right line carrying three tracing points A, B, C, move in anymanner
in a plane, returning to its original position after maHng a complete revolution

;

and fi (A), {£), {C) represent the entire areas of the closed curves described by
the points A, S, C, respectively, prove that

£G X {A) + CAx {S) + AS X (C) -i- IT '.AB . BG. GA = o,

in which the lines AB, BG, &a., are taken with their proper signs : i.e.,

AB = -BA,&c.
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13. A, B, C, D, are four points rigidly connected together, and moving in
any way in a plane ; if they describe closed curves, of areas (A), (B), {€'). {D),
respectively ; and if x, y, j, be the areolar coordinates of B referred to the
triangle ABC, prove that

(/)) = a:M) + y(5) + s(C)+,rr-.

vrhere t is the length of the tangent from J) to the circle circumscribed to the
triangle ABG. Mr. Leudesdorf, Messenger of Mathematics, 1878.

This follows immediately : for let B be the point of intersection of the lines

AB and OD, then, by (18), we get a relation between {A), {B), and (JP) ; and
also bet^veen ((7), {B), and (P). If P be eliminated between these equations we
get the rec[uired result.

14. Show that a corresponding equation connects the areas of the pedals of

any given closed curve with respect to four points A, B, C, B, taken respectively

as pedal origin. Mr. leudesdorf.

15. If a curve be referred to its radius vector }• and the perpendicular p on
the tangent, prove that its area is represented by

il

pr dr

'/r^- p'

16. A chord of constant length («) moves about within a parabola, and
tangents are drawn at its extremities ; find the total area between the parabola
and the locus of intersection of the tangents.

Ans. —

.

2

17. From the centre of an ellipse a tangent is drawn to a semicircle

described on an ordinate to the axis major
;
prove that the polar equation of the

locus of the point of contact is

a>i'

and that the whole area of the locus is

IT o'S

^'/dU^l^ + t

18. Apply the three methods of approximation of Art. 148 to the calculation

1^ dx I

, adopting — as the common
I +ic 12

interval in each case. Ans. (i), .693669. (2), .693266. (3), .693224.

The 7-eal value of the integral being log 2, or .693147, to the same number
of decimal places.

1 9. Prove that the sectorial area bounded by two focal vectors r and r' of a

parabola is represented by

3"

where c is the chord of the arc, and the semiparameter of the parabola.

(('-4^r-{'-^')')'
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20. Show that the whole area of the inverse of the ellipse -„- + -jr, = i ia-

a' 0'

represented by

I _f!_^'V(«= *2 \o^ b'-j w 4-/)'

where a, p, are the co-ordinates of the origin of inversion, and k is the radius of

the circle of inversion.

51. A given arc of a plane curve turns through a given angle round a fixed

point in its plane ; what is the area described f

22. Given the base of a triangle, prove that the polar equation of the locus,

of its vertex, when the vertical angle is double one of its base angles is

a{2 cos 39 + l)

2 cos B

Hence show that the entire area of the loop of the curve is 3«_V_3_

4

23. is a point withiu a closed oval curve, F any poiut on the curve, QPQ'
a straight line drawn in a given direction such that QP = FQ' = PO

;
prove that

as P moves round the curve, Q, Q', trace out two closed loops the sum of whose
areas is twice the area of the original curve. Camh. Trip. Exam., 1S74.

24, Prove that the area of the pedal of the cardioid r = a(l - cos fl) taken,

with respect to an internal point at the distance c from the pole is

— (Sa8 - 2ac + 202). {Ibid., 1876.)

25. The co-ordiiates of a point are expressed as follows

:

y+ i' " fl3 + I

'

-/v 4- ^ - 3 A ^

find the equation of the curve described by the poiut, and the area of the portion

of the plane iaolosed thereby.
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CHAPTEE VIII.

LENGTHS OF CURVES.

150. IJength ofCurves refierred to Rectangular Axes.
The usual mode of eonsideriiig the length of a curve is by
treating it as the Hmit of a polygon when each of its sides is

infinitely small. If the curve he referred to rectangular axes
of co-ordinates, the length of the chord joining the points

{x, y) and {x+ dx, y + dy) is ^dx^ + dy"r, and, consequently, if

s represent the length of the curve measured from a fixed

ipoint on it, we shall have ds = ^/daP' + dy', or, integrating,

taken between suitable limits.

The value of — in terms of x is to be got from the equa-

tion of the curve, and thus the finding of s is reducible to a
question of integration.

The determination of the length of an arc of a cm-ve is

called its rectification.

It is evident that if y be taken for the independent variable

we shall have

J
Again, when x and y are given functions of a single va-

riable (p, we have

s =
l(S)MI)T*

In each case the form of the equation of the curve deter-

mines which of these formulae should be employed.
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The curves whose lengths can be obtained in finite terms
(compare Art. 2) are very Hmited in number. We proceed to

consider some of the simplest cases.

151. The Parabola.—^Writing the equation of the

parabola in the form «* = zmx, we get -r- = —

.

° ay m

Hence s = Vy'' +m'^dy.

The value of this integral can be obtained from that of

the area of a hyperbola (Art. 130), by substituting y for x,

and ni^ for - a^.

Thus we have

y^y'^ m' m fy + ^y'^ + ni'

zm 2 °\ m (2)

the arc being measured from the vertex of the curve.

152. The Catenary.—The equation of the catenary

(Art. 131)' is

y=l(f-,i^y
^^-

Hence

dx 2^

f .

dy-\i I

dx \ dx

s =-
2

i
= - e" + e

e''dx + -
2

e'^\

If s be measured from the vertex V, we have

a
I

the same result as already arrived at in Art. 131.

Again, since PL = P V, andNL is constant, it follows that

the catenary is the evolute of the tractrix (see Ex. 9, p. 219).
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153. Semi-cubical Parabola.—The equation of this

curve is of the form ay- = «'.

, x^ dy 3fx\i cIs f g^Y
I a^''

' ' dx z \aj ' dx \ /^a)

'

1+^-] dx= — i+— + const.
i\aj 27 \ ^aj

If the arc he measured from the vertex, we get

27 (V 4«/

The semi-cuhical parahola is the first curve whose length
was determined. This result was discovered by William
Neil, in 1660.

154. Rectification of Evolntes.—It may he noted
that the rectification of the semi-cubical parabola is an
immediate consequence of its being the evolute of the ordinary

parabola (see Diff. Calc, Art. 239). In like manner the

length of any curve can be found if it be the evolute of a
known curve, from the property that any portion of the arc

of the evolute is the difference between the two corresponding

radii of curvature of the curve of which it is the evolute.

For example, we get by this means the lengths of the

cycloid, the epicycloid and the hypocycloid.

Again, since the equation of the evolute of an ellipse is

{ax)l + {hy)l = {a' - b%
the length of any arc of this curve can be at once found.

This can also be readily got otherwise ; for, writing the

equation in the form

and making x = a sin'0, we get y = (5 cos^j and

ds = {dx' + dy^)i = 3 sin cos (p{a^ sin'0 + j3- eosi'<p)id(p

3(a' sin'd + /S'cos'a)* ,, , . , „, , ,

^ 2(1' -m— ^"'
'^

"*" ^'
'''^'
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Hence ,

(a' sin' + 6' cos' d>)*

If the arc be measured from the point x ~- o, y = ^, we
get the constant

- /3' , _ (a'sin'0 + ^'cos'^)^-ffl
~ IF^^'

^""^ '

" ^^"^ •

If a = /3, the expression for ds becomes 3a sin cos
^

hence we get s= - a sin'^, the arc being measured from the

same point as above.

Examples.

1. Find the length of the logarithmic curve y — ca".

Here log « = a!log« + logo; . •. -7- = -, where 4 = , .

dy y' loga

Hence ,_ f (^' + i^')i^y _ f ydy f V>dy

J y J(4' + 2^')J J^(4' + J^')t

2. Find the length of the traotrix.

Here, hy definition (see fig. 26), we have FT= a ;

. „»,,, y , ds a
.: sin FT2f = -, hence — = - -

;

a dy y

.: s = - a\ — =— a log y + const.

If the arc he measured from the vertex A, we get

arc AP= a log ( -
J

•

3. Find in what cases the curves represented by a»'y» = x"*« are rectifiaUe.

Here we have

[15]
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(m + «)'' ^
Substituting b for ^— ^J , and making I + bx" = z-, this becomes

— I \ S"!

z^dz.

This expression is immediately integrable when — is a positive integer.

w
Hence, if — = r, we see that curves of the form ay^ = a''^' are rectifiable.

2»»

Again, if ^— be a negative integer, the expression under the integral sign

becomes rational, and can accordingly be integrated. This leads to tiiie form
y'i' = ax''~^. Accordingly, all curves comprised in the equation ay" = it™" are

rectifiable, m being any integer. (Compare Art. 62).

155. The Ellipse.—The simplest expression for the arc

of an ellipse is obtained by taking « = a sin 0, whence

y = b 003 (j>, and ds = (as' cos'^ + 6" sin'^)* dip ;

.-. s = («' cos'0 + 5" Bixi?^)id^.

It is often more convenient to write this in the form

{1 -e'^ bid} ^)id<l>, (3): = «|(i

e being the eccentricity of the ellipse.

It may be observed that ^ is the complement of the eccen-

tric angle belonging to the point («, y).

The length of an eUiptio quadrant is represented by the

definite integral
n

(i - e" sbx' (j>)i d(j>.

We postpone the further consideration of elliptic arcs to

a subsequent part of the Chapter.

156. Rectification in Polar Co-ordinates.—If the

curve be referred to polar co-ordinates we plainly have (Diff.

Oalc, Art. 180) rfs" = dr^ + r^dO'^ ; hence we get

I

r' + -^J d9, or s =
I

( I + -^j dr. (4)
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For example, the lengtli ofthe spiral of Archimedes, r = aO,

is given by the equation

•=-[{r^ + a^)hdr.

Comparing this with the formula (2) for the parabola, it

follows that the length of any are of the spiral, measured
from its pole, is equal to that of a parabola measured from its

vertex.

EZAIIFZES.

1. Cardioid, »• = «(i + cos 9).

dr
Here — = — a sin 8, and hence

6 6
* = a

J"
{{I + cosfl)' + Bii>?e}ide = 23 f cos - (?« = 4a sin - + constant.

2 2

The constant hecomes zero if -we measure « from the point for which B = 0.

2. Logarithmic spiral, r = d9.

Here, if i = =
, -we get

log a'

rde fi— = J; •'' =
j^

(I +*»)!<?/• = (I + i')J(ri-ro).

Accordingly, the length of any arc is proportional to the difference between
the vectors of lis extremities ; a result which also foUows immediately from the
property that the curve cuts its radius vector at a constant angle.

3. >"» = ffi"* cos mB.

Taking the logarithmic differentials, we get—^ = — tan )»9

;

ds
,'. -^r: = sec me.

rdd

Hence

Or, writing ^ for niB,

I (C0SJB9)"' dB.

(cos ^) dip.

This is readily integrated when — is an integer (see Art. 56).

[15 a]



228
'
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Whatever be the value of m, we can express the complete length of a loop of

the curve in Gamma Functions. For if we integrate between o aaid -, we ob-

viously get the length of half the loop.

Hence the lengtii of the loop (Art. 122) is

i

157. Formula of liegendre on Rectification.—
Another formula* of considerable utility in rectification fol-

lows immediately from the result obtained in Art. 192, Diff.

Calo. For, if this result he written in the form

-^—- =p,-weg6ts-t= Ipdw. (5)

Consequently, the total increment oi s -t between any two

points on a curve is equal to ^pdu) taken between the same
two points.

For example, in the parabola we have p = , and^ ^
COS(i>

hence

s ~t = a = a log tan (
- + - 1 + const.

J COS (L«
° \4 2 y

If we measure the arc from the vertex of the curve, and

observe that t = -r, this gives
aw

a smcu
s= r— +fl

cos w
log tan (^.h^).

The student can without difficulty identify this result with

that given in Ait. 151.

* This theorem is due to Legendre. See Traiti des Fonctima ElUptiques,

tomeii., p. 58S.
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It should be observed tliat when the curve is closed, its

whole length is, in general, represented by

r2ir

pdw.

Equation (5) furnishes a simple method of expressing the

intrinsic equation of a curve, when we are given its equation

in terms of ^ and w.

For, if^ =/(w) we have

dp

d(o
pdco =f'{bi) + /(a») dw, (6)

taken between suitable limits.

158. A^plieation to Ellipse. Fagnani's Theorem.
In the ellipse we have

p- = cf cos'w + V' sin^'w.

Hence, measuring the arc

from the vertex A, and observ-

ing that in this case FN\i> to be
taken with a negative sign, we
have

arc ^P + PiV =

Fig. 28.

(ffl" cos'w + J" sin'wjMw,

where o = lACN.
But, in Art. 155, we have found that if be measured

from the vertex B, the arc is represented by

(a' cos"^ + V- sin''^)4c?0.

Consequently, if we make L BCQ = a = I ACN, and draw
QM perpendicular to the axis major meeting the curve in P',

we shall have

arc BP' = arc AP + PN,

or, taking away the common arc PP,

BP-AP' = PjV. (7)
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This remarkable result is known as Fagnani's Theorem*,

and shows that we can in an indefinite number of ways find

two arcs of an ellipse whose difference is expressible by a right

line.

We add a few properties connecting the points P and P'

in this construction.

Examples.

1. If (a:, y) and (»', y') Is the co-ordinates of P and F', respectively; prove

the following :

—

(i). PJf=— , (j). PN= FN', (sr. CN. CN- = CA . CB,

(4). cp2 + car'2 = CA^ + CB2 = cp'^ + gn^.

2. Divide an elliptic quadrant into two parts whose difierenoe shall be equal

to the difierence of the semiazes.

This takes place when F and F' coincide ; in which case CN= f/ab, and

PN=a-b.
We shaU designate the point so determined on the elliptic quadrant as Fag-

nani's point.

3. Show that if a tangent he drawn at Fagnani's point, the intercepts

between its point of contact and its points of intersection with the axes are

respectively equal in length to the semi-axes of the ellipse.

4. If the lines PJTand P'N' be produced to meet, show that they intersect

on the confocal hyperbola which passes through the points of intersection of the

tangents to the ellipse at its vertices. Show also that this hyperbola cuts the

ellipse in Fagnani's point,

* Fagnani, Giomale de' Letterati d'Italia, 17 16, reprinted in his Prodmioni

Matematiche, 1750. It may he noted that if we integrate the equation of Art.

1 16, Diff. Calc, taking the angle C as obtuse, and adopting zero for the lowest

limit in each integral, we obtain

•\/i - A* sin'^a*?* + 1 \/ 1 - Ifi sin'''* dh

—
\ -v/i - &^sin'<!ifc + i^ sina sinisinc,

where h is defined by the equation sin C7= i sin c, and a, I, c are connected by

the relation

cos e = cos a cos i — sin a sin iy i — k' sin^c.

This equation furnishes a relation between three elliptic arcs, from which

Fagnani's theorem can be readily deduced, as well as many other theorems con-

nected with such arcs. See Legendre, Fonc. Ellip., tomei., oh. g.
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The equation of FNh

a sin 9 + y cos 9 = '\/a' sin'fl + 4* cos'?,

and that of P'N' is

ic cos fl y sm

If -we eliminate 6, we get

a

which represents the hyperbola in question.

159. The Hyperbola.—In the hypertola we have

Hence, measuring the arc from the vertex A of the curve,

we find, since o> is measured helow the axis.

PN-AP = (a' cos' to - 6''sin'tu)'^(?w,

where a = I. ACN.
As we proceed along the hyperbola

the perpendicular p diminishes, and
vanishes whea the tangent becomes

the asymptote.

Moreover, as the limit of w in this

case becomes tan"' -r, it follows that the

difference between the asymptote and
the infinite hyperbolic arc, measured
from the vertex, is represented by the

definite integral

ftan-i
*(o''cos'(j - Vsi.v?w)idu).

Examples.

1. If « > i, prove that

J(a + Acos0)W(/>

is represented by an elliptic arc, and that the semiases of the ellipse are the

greatest and least values of (a + i cos ^)".

2. If a < i, prove that

J (a + i cos ^)i d<^

is represented by the difference between a right line and a hyperbolic arc.
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1 60. Iianden's Theorem on a nyperbolie Arc.—
We next proceed to establish an important theorem, due to

Landen ;* namely, that any arc of a hyperbola can he expressed

in terms of the arcs of two ellipses.

This can be easily seen as follows :—^In any triangle,

adopting the usual notation, we have

c = aco&B + bcosA.

Now, representing by C the external angle at the vertex

C, we have C == A + £, and hence

cdC = {acosB + b cosA) dA + (a cos5 + 6 cos^) dB.

Consequently, supposing the sides a and h constant, and
the remaining parts variable, we have

\cdC = aoosBdA + b cosAdB + zasinB + const.,

or

{'/a' + 6' + 2a6cos CdO= l^a'-b^ sin'A dA+Wb' - a^sin^B dB

+ lasinB + const. (9)

Now, if we suppose a>b, ^/a' - V sin^A dA represents

(Art. 155) the are of an ellipse, of axis major 2a and eccen-

tricity -. Also -yb^ - a' sm^BdB represents (Art. 159) the

difference between a right line and the arc of a hyperbola,

whose axis major is b and eccentricity 7.

Again, y^a^ + 6^ + zah cosC = J{a- bysiD!'-+ {a + b)'' cos^—

,

* Landen, Fhilosophical Transactions, i']TS i
siso, Mathematical Memoirs,

1780.



Landen's Theorem on a HyperloKc Arc. 233

and consequently the integral

y^a^ + V + lab cos CdG

represents an arc of the ellipse whose semiases are a + 5 and
a — h.

Hence, Landen's theorem follows immediately.

It should be noted that the limiting values of A, B and
C are connected hy the relations

a sinB = b mxA, and = A + S.

Again, if we suppose the angleA to increase from o to it,

the external angle will increase at the same time from
o to IT, while B will commence by increasing from o to a,

and afterwards diminish from a to o (where a = sin"'- I

.

Moreover, in the latter stage b cosA is negative, and dB also

negative, consequently the term b cosA dB is positive through-
out the entire integration ; and the total value of

v/fi^ - a'sin'BdB is represented by 2 yb'-a^ein^BdB.

(J
Hence, substituting ^ for —, and integrating between the

limits indicated, we get, after dividing by 2,

IT

r {(a + bysiT^<^ + {a- hYco&^^]^d^
Jo

= ["(a" - 5^ 5m^A)^dA + ["(5'' - a" sm^B)^ dB. (10)

Accordingly, the difference between the length of the asymp-
tote and of the infinite arc of a hyperbola is equal to the differ-

ence between two elliptic quadrants. This result is also due to

Landen.
We next proceed to two important theorems, which may

be regarded as extensions of Fagnani's theorem.
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i6i. Theorem* of Dr. Crraves.—If from any point

P on the exterior of two confocal ellipses, tangents PT and
PT' be drawn to the in-

terior, then the difference

(Pr+Pr-rr) between
the sum of the tangents
and the arc between their

points of contact is con-

stant.

For, draw the tangents

Q8 and QS' from a point

Q, regarded as infinitely

near to P, and drop the

perpendiculars PN and Pig- 3°-

QN' ; th«n, since the conies are confocal, we have

z PQN = L QPN' ;
.-. PN' = QW.

Also, PT=TR + RN= TR + RS+ SN=TS+SN
= TS+ SQ- QK

In like manner

PT'^PN'+S'Q-rS';

.'. PT + PT' =Q8+ Q8' + TS- T'8',

or PT + PT' - TT' = Q8 + Q8' - 88'.

Hence, PT + PT' - TT' does not change in passing to

the consecutive point Q ; which proves that PT + PT' - TT'
has a constant value.

* This elegant theorem was arrived at by Dr. Graves, now Bishop of Limerick,

for the more general case of sphericalconics, from the reciprocal theorem, viz. :

—

If two spherical conies have the same cycUo arcs, then any arc touching the

inner will cut from the outer a segment of constant area. (See Graves' trsmsla-

tion of Chasles on Cones and Spherical Conies, p. 77, Dublin, 1841.)

It should be remarked that the theorems of this and of the following article

were investigated independently by M. Chasles. The student will find in the

Comptea Bendm, 1843, 1844, a nimiber of beautiful applications by that great

geometrician of these theorems, as well to properties of confocal conies, as also

to the addition of elliptic functions of the first species.
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TMs value can be readily expressed by taking the point

at ^, one of the extremities

of the minor axis of the

exterior ellipse. Let D be
the point of contact of the

tangent drawn from B, and
drop DM, and DN perpen-
dicular to CA and CB,
respectively.

Let CA = a, CB = b,

CA'-d, GB'=b', e the eccen-

tricity of interior ellipse. -^^S- 3'-

Then, by Art. 155, the length of arc

BB = a

where

Again,

(i - e^Ein''0)M^,

cos a :

BK CN CB b

hence

CB CB CB b"

B'B^ = FN^ + BN^ =:{b'-b cos aY + «= sin"a

B'B = yy/b"-b' = a'sma.

(i -e'sin^^o'^,

Consequently we have

B'B-BB = a'siaa-a

Hence, in general,

PT+ FT'- TT' = 2a' sin a - 20 ["(i - e' &in^^fd<p,

where o = cos"' [7^].

(")
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The analogous theorem, due to Professor Mao CuUagh,
may be stated as follows :

—

162. Theorem.—If tangents PT, PT' be drawn to an
ellipse from any point on a con-
focal hyperbola, then the differ-

ence of the tangents is equal to

the difference of the arcs TKandi
KT.

The proofisleft to the student,

and is nearly identical with that
given for the previous theorem.

This result still holds when
the tangents are drawn from a
point on an ellipse to a confocal

hyperbola, provided that the tan-

gents both touch the same branch
of the hyperbola ; as can be seen
without difficulty.

As an application* we shall

Landen; viz., that the difference

asympiote and of the infinite branch of
a hyperbola can be expressed in terms

of an arc of the hyperbola.

For, let the tangent at A meet
the asymptote in B, and suppose a
confocal ellipse drawn through B.
Then, regarding DT as a tangent to

the hyperbola, it follows, by the
theorem just estabKshed, that the

difference between BT and KT is

equal to the difference between BA
and AK.

Consequently the difference be-

tween the asymptote CT and the

hyperbolic branch ^T is equal to

BA + BQ - 2KA. Consequently the

required difference is expressible in

prove another theorem of

between the length of the

Kg. 33-

terms of given lines and of the hyperbolic arc AK.

* I am indebted to Dr. Ingram for this application of Professor M'Cullagh's
theorem.
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We next proceed to consider two important curves whose
rectification depends on that of the ellipse.

163. The Iiimason.—From the equation of the limacon,

>• = fl cos + 5, we get -r- = - a siu 0,

and hence
ds = (a' + 6* + 2ah cos Q)idd

;

.-.«=[ {{a + hy cos= ^ + (« - hy sm^^dO.

Accordingly, the rectification of the lima9on depends on
that of the ellipse whose semiaxes are a + h and a-b.

164. Tbe Epitroehoid and Hypotrochoid.—The
epitroehoid is represented by the equations (see DifE. Calc,

Art. 284)

a; = (a + &) cos - c cos —-— 9,

y = [a + 0) smo - c sm —— U.

Hence

dx
- (fl! + S) Isin - - sin —7— ,

(a + b) jcos - 7 cos —7— 0!

.

Squaring and adding we get

dp

dO'

a + b
i' + c'-25ccosyj*(/0.

Hence, suhstitutiag—- for 0, we get

s = ^^^~-
[
{(* + cf sin^^ +{b- cy cos-?>}«
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Consequently the length of an arc of the epitroohoid is equal

to that of an ellipse.

The corresponding form for the hypotrochoid is obtained

by changing the sign of b.

165. Steiner's Theorem on Rectification of
Roulettes.—If any curve roll on a right line, the length

of the arc of the roulette described by any point is equal

to that of the corresponding arc of the pedal, taken with

respect to the generating point as origin.

For (see fig. 20, Axt. 145), the element OCof the roulette

is equal to OPdw.
Again, to find the element of the pedal. Since the angles

at N and N' are right, the

quadrilateral NN'TO is inscri-

bable in a circle, and consequently

NN' = OT sin HON'. But, in

the limit, NN' becomes the ele-

ment of the pedal, and OTbecomcs
OP : hence the element of pedal

is OPdw ; consequently the ele-

ment of the pedal is eqijal to the

corresponding element of the Fig. 34.

roulette; .*. &c.

We proceed to point out a few elementary examples of this

principle. In the first place it follows that the length of an
arc of the cycloid is the same as that of the cardioid ; and
the length of the trochoid as that of the lima9on. Again, if

an ellipse roll on a right line, the length of the roulette

described by either focus is equal to the corresponding arc of

the auxiliary circle.

Moreover, it is easily seen, as in Art. 146, that, if one
curve roll on another, the elements ds and ds', of the roiilette,

and of the corresponding pedal are connected by the. relation

ds = ds'fi + ^\

In the case of one circle rolling on another, this relation

shows that the arcs of Epicycloids and of epitrochoids are

proportional to the arcs of cardioids and of limacons, which
agrees with the results established already.
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1 66. Oval of Descartes.—We next proceed to the

rectification of the Ovals of Descartes, some
_

properties of

which curves we have given in chapter xx.j Diff. Oalo.

The curve is de-

fined as the locus of

a point whose dis-

tances, rand /,froni

two fixed points are

connected by the

equation

mr + Ir' = d,

where /, m, d are

constants.

For convenience

we shall write the

equation intheform

mr + Ir = nc, (12)

where e is the dis-

tance between the

fixed points
l?jg- 35-

The polar equation of the curve is easily got. For, letF
and Fi be the fixed points, and L F^FP = d, then we have

/2 = r^ + c^ - zrc cos 6 ;

also from (12),

hence the polar equation of the locus is readily seen to be

OTw - P cos
r - zrc + c' = o. (13)

m' -r '

" m^ -P
For simplicity we shall write this in the form

r^ - 2rQ + C = o. (14)

Solving this equation for r, we get

»' = Q±v/i2'-G, oTFPi = Q + '/QF^,FP^Q.-.s/Qr^.

It can be seen without difficulty that, so long as I, m, n are

real afid unequal, the curve consists of two ovals, one lying

inside the other, as in the figure.
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Again we get from (14), by differentiation

[r -Q,)dr= rQ,'dO, where Q' = -^ ;

dr CI' Q'
, ds ^/q.'+Q,"-0

. —- = = —
, ; hence —rn

= — —

.

rdf) r-Q ^Q^-G '"^^^ ^Q?-C

Or ds = Qv/Q'j^Q^^^g ^ yQ^H-Q''- CdO, (15)

the upper sign corresponding to the outer oval, and the lower

to the inner.

Hence the difference between the two corresponding

elementary arcs is equal to

2 v/Q' +Q,'^~G dd, or, 2 v/a' + 2a6 cos + 6' - Cd9,

(writing Q, in the form a + 5 cos 0) ; this plainly represents

the element of an ellipse. Consequently, the difference

between two corresponding arcs of the ovals can be repre-

sented by the arc of an ellipse. This remarkable theorem is

due to Mr. W. Eoberts (Liouville, 1847, P- i95)- Some years

after its publication it was shown by Professor Genocchi

(Tortolini, 1864, p. g?), that the arc* of a Cartesian is ex-

pressible in terms of three elliptic arcs.

In order to establish this result we commence by proving

one or two elementary properties of the curve.

Suppose a circle described through F, Fi, and P ; and let

PQ be the normal at P to the oval, meeting the circle in Q,

and join FQ, and F^Q ; then let L FPQ = u,, and F,PQ = u> ;

, , dr jd/
1, 7

• /

and since m-z- + I —r = o> 'we nave i sm u) = m sm w

:

ds ds

.: FQ : F^Q^l: m.

* For the proof of this theorem giyen in the text I am indebted to Mr.

Panton. ,
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Also, since mr + l/ = nc; and (by Ptolemy's theorem) ''

FP . F,Q + F,P . FQ = FF, . PQ,
we have

FQ^FQ^PQ 7
I m 71

'

Henoe, denoting the common value of these fractions by
w, we have

FQ = lu, FiQ = mu, PQ = mi.

Again

dr Q' ya' - C
tan (X) =—^r. = — ; .'. cos (u = — ~.

Hence the first term in the expression for c?s in (15) is

equal to

Qdd e mn- P cos 6 ,»

cos tx) m^ - I cos u>

Again, let l FPFi = ;/-, z PF,C = ^,

and we have the two following relations between the angles

0, 0, ;/-

:

^ = 6 + ^, ^ sin + m sin = « sin 1^. (16)

Hence

d<jt- dO = dip, I cos 6 dO + m cos (j>d^ = n cos^dxp;

.-. {mn - P cos 9)d9 = m(n + lcoB^)dij> -n{m+ I cos \p)dip,

or

mn - /^ cos ,,, » + ^ cos A , w + ^ cos ti , , , ,

dO = m ^d<h-n -d\L. (17)
cos h) cos (O COS (J

Again, from the triangle FPQ, we have

y COS o) = PQ + FQ coaf = {n + I cos <p)u
;

n + ^cosd) »• /r- —
.-. = - = .yp + w" +

u

[16]

2ln COS0.
008 W ti
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In the same manner it can be shown that

m + Icosip c J- r-
= - = i/P + nr + 2lm cos i//.

cos ft)

Hence we have

[Q,d9 mc
f /- -.

= —.—= a/ r + TO^ + 2ln cos <h ad>
Jcosft> ni' - P]

fin r J

5—j5U/^'' + »»''+2/»tC0St/irfl/'. (18)

Each of these latter integrals is represented by the arc of an
ellipse, and, accordingly, the arc of a Cartesian Oval is

expressible in the required manner.
It should be noted that the limiting values of 0, 0, and ^

are connected by the relations given in (16).

Again, it can be shown without difficulty that the axes of

the ellipses are the lines {AB,'CI)), {AG, BB), and {AD, BO),
respectively/ : a result also given by Signor Grenocchi. First,

with respect to the ellipse whose element is ^Q,^ + Q'^ - C'iB,

it is plain that its axes are the greatest and least values of

2 y/Q' + Q,'' - C, or of z-Za^ + b" + zah cos - C ; but these

are 2 ,/'{a + by - C and 2 ^{a - by - G, which are plainly

the same as the greatest and least values of PPi ; and, con-

sequently, are AB and CD.
Again, from the equation mr + Ir' = nc, we get

mFB + UFB + c) = nc; •. FB = '^^-ZUl,
^

l + m
In like manner,

{n+ l)e
FC =

l + m

Again, since we get the points on the outer oval by
changing the sign of I, we have

m-l ' m- I
'



Reetifieation of Curves of Double Curvature. 243

and, consequently,

AD = ^, BC^.^'''
m- I' l + m'

-, 2mc{n + l) 2mc{n-l)
^

but these are readily seen to be the values for the axes of the

ellipses in(i8).

It should be noted that if we substitute in (15) the values

for a and b, the expression for the element ds becomes of the

following symmetrical form

:

ds=—z—Tz^P+n^+2lncQB(j>ddt—;

—

-,'yP+m'+2lmcoB\Ld\L
mr-P ^ ^ m'-r ^

Ic

m^ - P
^/ni^ + ff - 2mn cos ddd. (19)

"We shall conclude the Chapter with a brief account of

the rectification of curves of double curvature.

167. Rectification of Curves of Double Curvature.
If the points in a curve be not situated in the same plane, the

curve is said to be one of double curvature. The expression

for its length is obtained in an analogous manner to that

adopted for plane curves ; for, if we refer the curve to a
system of rectangular axes in space, and denote the co-ordi-

nates of two consecutive points by {x, y,z),[x+dx,y+ dy, s + rfa),

we get for the element of length, ds, the value

ds = ^/d:^ + dy"^ + d^.

The curve is commonly supposed to be determined by the
intersection of two cylindrical surfaces, whose equations are
of the form

f(x, y) = o, <i,{x, s) = o.

From these equations, if — and — be determined, the formula
UiOO 0,30

of rectification is

=j^(i)'^e)T- <»)

[16 a]
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When z is taken as the independent variable, this formula

becomes

'\Hti*m--

Hence

the limits being in each case determined by the conditions of

the question.

The simplest example is that of the helix, or the curve

formed by the thread of a screw. From its mode ofgeneration

it is easily seen that the helix is represented by two equations

of the form

a; = « cos I T
J,

y = a sm ( y 1.

dx a . fz\ dy a fs\

•• * =^i + yjdz, or s = ^i + I^Js

;

the arc being measured from the point in which the helix

meets the plane of xy.

This result can also be readily established geometrically.

EXAJIPLES.

I. Find the length of the curre whose equationB are

X' sfi

Here - }(' + S + 5*)*''' = !(' + 5) ''^ = "^ +£ = * "^

'
=

the arc being measured from the origm.

This is a case of a system of curves which are readily rectified ; for, in ge-

neral, whenever

t^y _ ^

wehave ('n^+d^j =('+J^)'

and therefore ila = ix ^ di, or s = a; + a + const.
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du
Thus, if y =/(«) be one of the equations of a curve, we get 3- = f'(x), and

ax
hence, if a second equation he determined from the equation

the length of the curve is represented by a; + « + const. ; the value of the con-
stant being determined hy the conditibns of the problem.

For instance, if y = « sina;, we get /'(a;) = a cos x, and

dz a^ a« .

-r-= — cos'^a;; .•. z= — (a; + cosa; sina;).
dx i 4

^ '

Hence the length of the curve of intersection of the cylindrical surfaces

y = « sin a, s = — (a; + cos a; sin a:)

4

is J + a: ; the length being measured from the origin.

z. y = zyax — x, z = x A—

.

Am. s = x + y - n.

3 ' ^

3. r-^ — — = \, a; = -(«» + e "), the length being measured from the point

of intersection of the curve with the plane of xy.
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Examples.

1

.

Find the length of any arc of the catenary

a / 5 .Z\
y = -{ea + e o I,

and show that the area between the curve, the axis of ar, and the ordinates at

two points on the curve, is equal to a times the length of the arc terminated by
those points.

2. In any curve prove that s = 1
—

^ and hence find the length of a

parabolic are.

3. Show that the integral I
— — may be represented by an arc of

J v/te' — a^ — i?

a circle, and find the limiting values of x iot its possibility.

f \a^ — e^ x^
4. Show that the length of an elliptic arc is represented by »/

—

,,_ ^
dx,

where a is the semiaxis major, and e the eccentricity.

5. Express the length of an elliptic quadrant in a series of ascending powers

of its eccentricity.

-T'i--(rT-(H)1-(^)'r-H-
6. Prove that the integral of

x'dx

'/(!i;2-;32)(o»-a;»)

can be represented by an arc of the ellipse whose semiaxes are a and j3.

7. Show that the rectification of the sinusoid ^ = i sin :i: is the same as that

of an ellipse.

8. Prove that the whole length of Hie first negative pedal oi an eUipse, taken

with respect to a focus, is equal to the circumference of the circle described on

the axis minor as diameter.

9. Show that the length of an arc of the curve r = a sin «9 is equal to that

of an arc of the ellipse whose semiaxes are a and na.

10. If, from the equation of a curve referred to rectangular co-ordinates, we
form an equation in polar co-ordinates, by taking r = y and rdS = dx, then the

lengths of the corresponding arcs of the two curves are equal, and the area j ydx

of the former curve is equal to the corresponding sectorial area of the latter.

11. Prove that the difference between the lengths of the two loops of the

lima90n r = a cos fl + S is equal to 8i : a being greater than b.

12. Being given three points A, B, G on the circumference of an eUipse,

show that we can always find, at either side of C, a fourth pointU such that the

difference between AB and CD shall be equal to a right line.
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13. If a circle be deBciibed touching two tangents to an ellipse and also

touclung the ellipse, proye that the point of contact with the ellipse divides the
elliptic arc between the points of contact of the tangents into two parts, whose
difierence is equal to the difference of the lengtl^ of the tangents (Chasles,

Comptes Sendus, 1843).

14. Prove that the entire length of any closed curye is represented by

fpda— taken round the entire curve
; p being the radius of curvature at any

P
point, and jo the. length of the perpendicular from any fixed point on the tangent.

0^ -}- I ds fi*^' + I

15. If e'J = be the equation of a curve, prove that -r- = , and

hence rectify the curve.

16. Calculate approximately, by the tables of Art. 125, the whole length of

a loop of the curve r = o coa - 9.

Here, by Ex. 3, Art. 156, the required length is

Hence, taking logarithms, and observing that -^ = i.6js, and ^= 1.125, ^'^
o o

get as the required approximation a x 3.29488. The figure of this curve is

exhibited in Art. 268, Diff. Calc.

17. In a Cartesian Oval whose two internal foci coincide, prove that the
difierence of the two arcs, intercepted by any two transversals from the exter-

nal focus, is equal to a straight line which may be found. [The above curve
is the inverse of an ellipse from a focus.]—Professor Crofton, i'duc. Times,
June, 1874.

From (13) Art. 166, it follows, making n = m, that the equation of the
Umaijon, in this case, is

P cos B - m'
r' + 2rc — — + e> = o,

which is of the form
r' + 2r{a cos 8 - /3) + (a - j8)* = o.

Hence, by (15), the difference between two corresponding elementary arcs is

/— e

4V a;3 cos - do.

Consequently, if Bi and 62 be the values of 9 for the two transversals in

question, we get the difference of the corresponding arcs

„ /-^ / . 92 . 9A
oy' ap I sm sm— I

.

Also, it can be readily seen that the distance between the vertices of the

lima9on is 4y a^ ; . . &c.
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1 8. Show that the length of an arc of the ellipse -5 + j^ = i is represented

by the integral

an^\
(«''cos2e + i2sin2fl)3

we have ds = prffl, anc

19. Show, in like manner, that the length of a hyperholio arc is represented

This result is easily seen, for we have ds = prffl, and p =—j-
; . . &c.

by

anA '1

J (a«cos=e-i«6in»e)*

20. Hence prove that the integralfdx
(o - J:i;=)9(«'-iV)*

is represented by an elliptic arc when aV > ha', and by a hyperbolic arc when
ah' < h(C,

21. Prove that the differential of the arc of the curve found by cutting in

the ratio « : i the normals to the cycloid

y = a + 4 cos «, a; = «« + i sin «,

^(« + «inVf' + ^nab so? - du.

22. Each element of the periphery of an ellipse is divided by the diameter

parallel to it : find the sum of aU the elementary quotients extended to the entire

ellipse. Ait%. ti.

23. In the figure of Art. 158, if o = Z -4CiV', and iS = / :BCN, prove that

tan a tan ^
a b

24. Find the length, measured from the origin, of the curve

y

a;2 = «2(i - c).

Ans. » = a log (
I
- «

° \a-xj

25. Find the length, measured from <p = c, of the curve which is represented

by the equations

X = (2a — b) sin ^ - (a — i) sin'^,

y = [2b — a) cos <p—
(fi
— a) coi^ip.

Ans. J = i (a + i) ^ + f (ffl — i) sin cos ip.

26. Prove that the sides of a polygon of maximum perimeter inscribed in a

conic are tangents to a confocal conic.—Chasles, Comptes liendus, 1 845.

27. To two arcs of an equilateral hyperbola, whose difference is rectifiable,

correspond equal arcs of the lenmiscate which is the pedal of the hyperbola.

Jbid:
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28. The tangents at the extremities of two arcs of a oonio, whose difference

is reotifiaUe, form a quadrilateral, whose sides are tangents to the same circle.

—

Ibid.

29. In an equilateral hyperbola prove that

rds = Ja'rf(tau2e),

and hence show that jrds taken between any two points on the curve is equal to

the rectangle under the chord joining the points and the line connecting the

middle point of the chord with the centre of the hyperbola. Mr. AV". S. M'Cay.

30. If

he any point on a curve, show that the arc is the integral of

«V/^^^. (M.Serret

What curve do the equations represent ?

3 1

.

Through any point in a plane two conies of a confocal system can be

drawn. If the distance between the foci be zc, and the transverse semi-axes of

these conies be fi, ii, prove the following e-tpression for any arc of a curve

.. = (..-.) j-^..^j.
32. Prove that the following relation is satisfied by the y. and v of any point

on a tangent to the ellipse for which /t has the value fix :

dit. dv

33. The arc of the envelope of the right line s sin a - y cos o =/(o) is the

integral of (/(a) + /" (a)) da. (Hermite, Cours (VAnalyse.)

3 4. The arc of the curve in which y' + a^ x^ — zax = o and z' — S' «' + 2{a; = o
intersect, if «^ = i + i^, is

r v i{(i ~ b)dx
(Ibid).

bx)

35. Show that the arc of the curve *" I~ ~ ' depends on an integral of

I \/ a; (2 — ax) (2 — bx)

the form

I
& •s/a- (1 + 2)' + 4-(i - «)', -where k = —

J m
36. Show that rectification may, in general, be reduced to quadratures as

follows :

—

Produce each ordinate of the curve to be rectified until the whole length is in
a constant ratio to the corresponding normal divided by the old ordinate, then
the locus of the extremity of the ordinate so produced is a oiirve whose area is in

a constant ratio to the length of the given curve.

By this theorem Van Huraet rectified the semi-cubical parabola nearly simul-
taneously with Wm. Neil.
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CHAPTEE IX.

VOLUMES AND SURFACES OF SOLIDS.

1 68. Solids.—The Prism and Cylinder.—The most
simple solid is the cube, which is accordingly the measure of

all solids, as the square is that of all areas. Hence the

finding the volume of a solid is called its cubature. Before
proceeding to the application of the Integral Calculus to

finding the volumes and surfaces of solids we propose to show
how, in certain cases, such volumes and surfaces can be found
from geometrical considerations. In the first place, the

volume of a rectangular parallelepiped is measured by the

continued product of the three adjacent edges ; and that of

any parallelepiped by the area of a face multiplied by its

distance from the opposite face.

Again, the volume of a right prism is measured by the

product of its altitude into the area of its

base. Por example, the volume of the right

prism represented in the figure is mea-
sured by the area of the polygon ABODE,
multiplied by the altitude AA'. Again,

since each lateral face, AB B'A' for ex-

ample, is a rectangle, it follows that the

sum of the areas of all the faces (exclusive

of the two" bases), i.e. the area of the sur-

face of the prism, is equal to the rectangle

under the altitude and the perimeter of

the polygon which forms its base.

This and the preceding result still hold

in the limit, when the base, instead of a polygon, is a closed

curve of any form, in which case the surface generated is

called a cylinder. Hence, if V denote the volume of the por-

tion of a cylinder bounded by two planes drawn perpendi-

cular to its edges, h its height, andA the area of its base, we
get V=Ah.

Fig. 36.
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Again, if S denote the superficial area of a cylinder,

bounded as before, and S the length of the curve which forms

its base, we have "2. = Sh.

169. The Pyramid and Cone.—If the angular points

of a polygon be joined to any external point, the solid so

formed is called a, pyramid. Any section of a pyramid by a

plane parallel to its base is a polygon similar to that

which forms the base, and the ratio of their homologous

sides is the same as that of the distances of the planes from

the vertex of the pyramid. Hence it follows that pyramids

standing on the same base, and whose vertices lie in a plane

parallel to the base, are equal in volume. For, the sections

made by any plane parallel to the base are equal in every

respect ; and, consequently, if we suppose the pyramids

divided into an indefinite number of slices by planes parallel

to the base, the volumes of the corresponding slices will be
the same for all the pyramids ; and hence the entire volumes

are equal.

Also, if two pyramids have equal altitudes, but stand on

different polygonal bases, the volumes of the pyramids will

be to each other in the same proportion as the areas of the

polygonal bases. For, this proportion holds between the

areas of the sections made by any plane parallel to the base ;

and consequently between the slices made by two infinitely

near planes.

Again, the pyramid whose base is one of the faces of a
cube, and whose vertex is at the centre of the cube, is

the one-sixth part of the cube ; for the entire cube can be
divided into six equal pyramids, one for each face. Hence,
denoting the side of a cube by a, the volume of the pyramid

in question is represented by — ; i- e. by the product of the

area of its base into one-third of its height.

Now, if we vary the base, without altering the height,

from what has been established above it follows that the

volume of any pyramid is the area of its base multiplied by
one-third of its height.*

* This demonstration is taken from Clairaut's Ellmens de Giomitrie. The
student is supposed familiar with the more ancient proof, from the property that

a triangular prism can he divided into three pyramids of equal volume.
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If the base of the pyramid be any closed curve, the solid

so formed is called a cone ; and we infer that the volume of a

cone is equal to one-third of the product of the area of its hose

into its height.

If the base of a pyramid be a regular polygon, and the

vertex be equidistant from the angular points of the polygon,

the pyramid is called a right pyramid.

In this case each/ace of the pyramid is an isosceles triangle,

whose area is the rectangle under the side of the polygon
and half the perpendicular of the triangle. Hence the

surface of the pyramid is equal to the rectangle under the

semi-perimeter of the regular polygon and the perpendicular

common to each face of the pyramid.
Again, if we suppose the number of sides of the regular

polygon to become infinite, the pyramid becomes a right

cone ; and we infer that the entire surface of a right cone is

equal to the rectangle under the semi-circumference of its

circular base and the length of an edge of the cone.

Hence, if a be the semi-angle of the cono, I the length of

an edge, and r the radius of its base, wo have r = 1 sin a, and
the surface of the cone is represented by nV' sin a.

If a right cone be divided by two planes ABC, DEF,
perpendicular to its axis, as in figure, the o
part intercepted by the planes is called a
truncated cone.

The surface of a truncated cone is

easily expressed ; for if OA = I, OD = I',

the required surface is -n sin a {P - P), /^~~^~\
CTir{l-l'){l+l')sina.

_ / \
Now, if the circular section LMN be j,

/- -^^
drawn bisecting the distance between f m~
ABG&nA. DEF, the circumference of the /
circle LMN is tt (/ + /') sin a. Hence the -^C^^ ^^'^
surface of the truncated cone is equal to b

the rectangle under the edge AD and the Fig. 37.

circumference of LMN its mean section.

170. Surface and Yolume of a Sphere.—To find the

superficial area of a sphere ; suppose a regular polygon in-

scribed in a semicircle, and let the figure revolve around the

diameter AB ; then each side of the polygon, PQ for

example, will describe a truncated cone.
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Kg. 38-

Now, from the centre C draw CD perpendicular to PQ,
and construct, as in figure ; then, by the preceding Article,

the surface generated hy PQ, is

equal to lit PQ, . BI.

Again, hy similar triangles,

we have I)G:BI=PQ: MN;
.: PQ.BI=BG .MN.

Accordingly, since the per-

pendicular CB is ofsame length

for each side of the polygon, the

surface generated by the entire

polygon in a complete revo-

lution is equal to an- CB . AB = 4n-i2'cos - ; where n repre-

sents the number of sides of the polygon, and B, the radius of

the circle.

If we suppose n to become infinite, the solid generated

by the polygon becomes a sphere ; and we get 477 -K'' for the

entire surface of the sphere. Hence,- the surface of a sphere

is equal to four times the area of one of its great circles.

Again, it is easy to find the surface generated by any
number of sides of the polygon. Thus, for example, that

generated by all the sides lying between the points A and Q
is plainly equal to 2jr CB . AS-

Hence, in the limit, the surface generated in a complete
revolution by the arc ^Q is equal to ztt .AC . AN. Such a
portion of a sphere is called a spherical cap.

Again, suppose the points A and Q connected ; then, since

AQ^ = AB . AN, it follows that the area of the spherical cap

generated by the arc ^Q is equal to the area of the circle

whose radius is the chord AQ.
The volume of a sphere is readily found from its surface

;

for we may regard the volume as consisting of an infinitely

great number of pyramids, having their common vertex at

the centre, and whose bases form the entire surface. But the

volume of each pyramid is represented by the product of one-

third of its height (i. e. the radius) by its base. Hence the

entire volume of the sphere is one-third of its radius multi-

plied by its surface, i. e. — E?.
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Examples.

I. If a sphere and its circumscribing cylinder be cut by planes peipendi-

ly cular to the axis of the cylinder, prore tiiat the intercepted portions of the

surfaces are equal iu area.

/2. Prove that the volume of a sphere is to that of its circumscribing cylinder

in the proportion of 2 to 3 : and that their surfaces also are in the same propor-

tion. These results were discovered by Archimedes.

171. Surfaces of Revolution.—In tlie preceding we
have regarded a sphere as generated by the revolution of a

" circle around a diameter. In general, if any plane he sup-

posed to revolve around a fixed line situated in it, every point

in the plane will describe a circle, and any curve lying in the

plane will generate a surface.

Such a surface is called a surface of revolution ; and the

fixed line, round which the revolution takes place, is called

the axis of revolution.

It is obvious that the section of a surface of revolution

made by any plane drawn perpendicular to its axis is a

circle.

If we suppose any solid of revolution to be out by a series

of planes perpendicular to its axis, the volume of the solid

intercepted between any two such sections may be regarded

as the limit of the sum of an indefinite number of thin cylin-

drical plates.

Now, if we suppose the generating curve to be referred to

rectangidar axes, the axis of revolution being that of x, the

area of the circle generated by a point {x, y) is plainly equal

to iry^, and the cylindrical plate standing on it, whose thick-

ness is dx, is represented by iry^dx.

Hence, the element of volume of the surface of revolution

is -iry'dx, and the entire volume comprised between two sec-

tions, corresponding to the abscissse a and /3, is obviously

represented by the definite integral

y'dx,
a

in which the value of y in terms of x is to be got from the
equation of the generating curve.
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In like manner, the Tolume of the surface generated by
the revolution of a curve around the axis of y is represented

by TT^x'dy, taken between suitable limits.

Again, we may regard the surface generated by any
element ds of the curve as being ultimately a portion of the

surface of a truncated cone, as in Art. 1 70 ; and hence the

surface generated by ds in a complete revolution round the

axis of X is represented hj ziryds; and accordingly the entire

surface generated is represented by

27r ^yds.

taken between proper limits.

"We proceed to apply these formulae to a few elementary
examples.

172. Xhe Sphere.—Let «* + j/'- = a" be the equation of

the generating circle ; then, substituting a' - x' for y'^, we get

for the volume

F = (a' - x^) dx = Tr[a^x
) + const.

If we take o and a as limits, we get —— for the volume of
3

the hemisphere ; .". the entire volume of the sphere is -—

,

as in Art. 170.

To find the volume of a spherical cap, let h be the length
of the portion of the diameter cut off by the bounding plane,
and we get for the corresponding volume

n\ (a' - x') dx = nh'^i a - -
|.

Ja-» V 3/

Again, to find the superficial area, we have

^ f '¥\K f x^'\K «
, , ,ds=\i +— \dx = \i + —\dx=-dx; .-. yds = adx.

Hence, the surface of the zone contained between two
parallel planes corresponding to the abscissae Xi and Xa is

27r adx = 2iTa{xi - x^
;

ID



256 Vohctnes and Surfaces of Solids.

that, is the product of the circumference of a great circle by

the breadth of the zone. This agrees with Art. 1 70.

173. Right Cone.—If a denote, as before, the angle

which the right line which generates a cone makes with its

axis of revolution, we get y = a; tan a, taking the vertex of the

cone as origin, and the axis of revolution as that of x ; accord-

ingly, the element of volume is n- tan^ax'dm.

Hence, if /* denote the height of the cone, we get its

volume equal to

5r tan' a o^dx =— tan' a

;

Jo 3

i.e. - X area of its base, as in Art. 1 69.
3 .

Again, to find its surface, we have </s = sec acfo;

;

27r \ yds - 2ir tan a sec a

•h

xdx = 7r/i' tan a see a ;

which agrees with the result already obtained.

Examples.

I . The base of a cylinder is a circle whose area is eq^ual to the surface of a

y sphere of radius 5 ft. ; being given that the volume of the cylinder is equal to

Y the sum of the volumes of two spheres of radii 9 ft. and 16 ft., find the height

of the cylinder. Ana. 64J ft.

y2. A solid sector is cut out of a sphere of 10 ft. radius, by a cone the angle

of which is 120°; find the radius of tbe sphere whose solid contents are equal to

those of the sector. Arts. syi.

%. Two cones h^ve a common base, the radius of which is 12 ft. ; the alti-

tude of one is 9 ft. ; and that of the other is 5 ft. ; find the radius of a sphere

whose entire surface is equal to the sum of the areas of the cones.

Ans. 2v 21 ft.

/

.7I::Paraboloid of Revolution.—Writing the equa-

tion of a parabola in the form y' = 2mx, we get for the

volume of the solid generated by its revolution round the

axis of X
*'

v
2Trm j xdx = nmx^ + const. = - y^x + const.



Surface of Spheroid. 257

Hence, the volume of the surface generated hy the revo-

lution of the part of a parabola between its vertex and the

point {xi, 2/1) is represented by - pi^csi, i. e. is equal to half the

volume of the circumscribing cylinder.

Again, to find the surface of the paraboloid, we liave

2/^« = ^'(^i +
^J

Ay = -{y^ + m'Y ydy.

Hence, the surface of the paraboloid, between the same
limits as above, is represented by

277 1*1

m
[''

{^f + nf)\ydy =— \{y^ + »j^)3 - m\

.

Jo 3** I ;

175. Spberoids of Revolution,—If we suppose an
ellipse to revolve round its axis major, the surface generated
by the revolving curve is called ?i,]}rolate spheroid. If it re-

volve round the axis minor the surface is called an ohlate

spheroid.

The volume of a spheroid is easUy obtained ; for, taking

-J + Tj = I as the equation of the curve, we get, on substitut-

ing h^ ii -'—\ ioT y^.

d'
[a^ - (i!')dx = '^ xid? -—\ + const.

Hence the entire volume is —aV. In like manner, the vo-
3

lume of an oblate spheroid is obviously— bd^.

176. Surface of Spheroid.—In the case of a prolate
spheroid we have

[17],
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Hence, if CN = x„ CM= Xo, we get for 8, the zone gene-
rated in a complete revo-

lution hj the arc PQ,

S = z-

be

I(?-^"J'"
a

Now, if we take CD = -
e'

and construct an ellipse

whose semiaxes are CJD Fig. 39.

and CB, it is easily seen

(Art. 129) that the elementary area between two consecutive

ordinates of this ellipse is — ( -7 - a;' j dx. Hence it follows

that the area of the zone generated by the arc PQ is tt times

the area of the portion P1Q1Q2P2 of this ellipse.

Again, if AEi he the tangent at the vertex of the original

ellipse, we see that the entire surface of the spheroid is 47r

X the area BCAEi ; hut this is seen, without difficulty, to he

1,2
"'^ -1

2jro + 27r— sm 'e.
e

(I)

In like manner, we get for the surface S generated by the

revolution of an ellipse round its minor axis

/8=2n- xds = 2ir (a' + -^ t\ dy

n'e

f +
¥ \i

d,/.

If this be integrated, as in Art. 151, we get, after some
obvious reductions,

0" e V

If this be taken between the limits o and b, and doubled, we
get foj the entire surface of the ellipsoid

2ira' + 4''-(^) (^)
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It is readily seen, as in the former case, that the surface

of any zone of this ellipsoid is ir times the area of a corre-

sponding portion of the hyperhola

«" o'e'^if

bounded hy lines drawn parallel to the axis of x.

The area of the surface generated by the revolution of a
hyperbola round either axis admits of a similar investigation.

Examples.

1. Fmd the volume of the euriaoe generated by the revolution of a cycloid

round its tase.

Here, referring the cycloid to DA and u'l B
DB as co-ordinate axes, we have (see Diff.

Calc, Art. 272)

a; = a (^ + sin ^), y = a(l + cos^),

where / FCL = <p. '^'n
"^^ D

Henoe

dr= -^y^dx = wa'(i + cos ^fd^ ;

^'5- 4°.

. . for the entire volume Y, we get

(l + cos ^)'<?0 = l67r»' I cos6 - d^
Jo 2

n

= 32ira'l cos*8<f9, making -= 8.
Jo 2

Henoe V= Sir's'.

2. Find the whole surface generated in the same case.

Here S = 2t \ y ds = ^va^ l (i + cos ((>) cos - d<p
;

hence the entire surface is

327r(j2 \'>'00s'-rf*
Jo ^ ; 2

[17 a]
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Fig. 4«-

3. Find the volume and the surfece of the solid generated by the revolution

of the tractiix round its axis.

(i). Here we have

y*dx=- (a» - y^iydy
;

hence the volume generated by
the portion AP is

J» 3

The volume generated by the

entire tractrix is— a'; i. e. half
3

the volume of the sphere whose
radius is OA.

(2). The surface generated by AF is

27r I yds = 2ira I dy (see Ex. 2, Art. 154)

= 2jra(a - y).

Hence the entire surface generated is 2ira^ ; i. e. half the surface of the sphere

of radius OA.

4. Find the volume, and also the surface, generated by the revolution of the

catenary around the axis of x.

(i). Here the volume of the solid gene- X
rated by TF is represented by

/ - -

= — (ys + ax),

where a = FV.

(2). Again, since

we have

Fig. 42.

air I yds =— I y'^di.
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Confiequently the surface generated by PV in a complete revolution is -

X the Tolume generated ; i.e. = ir[ys + ax).

5. In the same curve to find the surface generated by its revolution round
the axis V.

Here

8--

Affain

f = 27r I xds = It I xe" (fa: + ir I xe "dx.

xe''dx= axe"— a\ e'dx^ a{xe^ - ae" + a)

Jo

Also the value of

I*

-
xe' a dx

is obtained by changing the sign of a in the last result.

Hence

• axe " — a'e ";fx
^^

xe » (&; = «'

.*. j8' = ir jjffl' + as (««-«"»
J

- 8'[e» + e"»]
[

= 27r(a'-* + a:s — fly).

177. Annular Solids.—If a
closed curve, -which is symmetrical
•with respect to a right line, he made
to revolve round a parallel line, then
the superficial area generated in a
complete revolution is equal to the

product of the length of the moving
curve into the circumference of the

circle -whose radius is the distance

bet-ween the parallel lines.

This is easily proved: for let

APBP' he any curve, symmetrical -with respect to AB, and
suppose OX to he the azis of revolution ; and draw PN, QM
t-wo indefinitely near lines perpendicular to the axis. It is evi-

'

dent thatPQ = P'Q'. Again, let PJST^ y, P'N=y', PQ, = P'^
= ds, BN = h ; then the sum of the elementary zones described
by PQ and P'Q' in a complete revolution is represented by

2Tr{y + y') ds = 4nbds.

Fig- 43-
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Conseqaently the surface generated by the entire curve is

ZTrbS, where S denotes the whole length of the curve.

A similar theorem holds for the volume of the solid ge-

nerated : viz., the volume generated is equal to the product

of the area of the revolving curve into the circumference of

the san~e circle as hefore.

For the volume of this solid is plainly represented hy

or by n- {y-y'){y + '!/)dx= 2TrJ {y-y')dx.

But the area of the curve is represented by

{y -f)dx:1'

consequently, denoting this area by A, and the volume by V,

we have
F= 2Trb X A.

In these results the axis of revolution is supposed not

to intersect the curve; if it does, the expression zirb x A
represents the differsnce between the volumes of the surfaces

generated by the portions of the curve lying at opposite sides

of the axis of revolution ; as is readily seen. A similar alte-

ration must be made in the former theorem in this case.

If a circle revolve round any external axis situated in its

plane, the surface generated is called a spherical ring. From
the preceding it follows that the entire surface of such a ring

is 47r''«J ; where a is the radius of the circle, and b the dis-

tance of its centre from the axis of revolution.

In like manner the volume of the ring is 2Tr^ a^b.

It would be easy to add other applications of these

theorems.
•''178. Cruldin's* Theorems.—The results established in

the preceding Article are but particular cases of two general

* Guldin, Centrobaryica, sen de centra gravitatis trium speeierum quantitatii

continues, 1635. Giildm arrived at liis principle ty induction from a smallnum-
1)er of elementary cases, 1]ut his attempt at a general demonstration yraa an

eminent failure. See Montuola Bist. dea Math., torn. ii. p. 34. Montucla has

sho-wn, tom. ii. p. 92, that Guldin's theorems can he estahlished from geome-

trical considerations, without recourse to the Calculus.
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propositions, usually called Guldin's Theorems, but originally

enunciated by Pappus (see Walton's Mechanical Problems,

p. 42, third Edition). They may be stated as foUows :

—

(i). If a plane curve revolve round any external axis,

situated in its plane, the area of the surface generated is equfil

to the product of the perimeter of the revolving curve by the

length of the path described, during the revolution, by the centre

of gravity of that perimeter.

(2). Under the same circumstances, the volume of the solid

generated is equal to the product of the area of the generating

curve into the path described by the centre of gravity of the re-

volving area.

To prove the former, let s denote the whole length of the

curve, X, y, the co-ordinates of one of its points, x, y, those

of the centre of gravity of the curve ; then, from the defi-

nition of these latter, we have

[yds

.'. 2Trys = 277 1 yds,

i. e. the surface generated by revolution round the axis of x is

equal to the product of 8, the length of the generating curve,

into 2 Try, the path described by the centre of gravity.

To prove the second proposition ; let A denote the area

of the generating curve, and dA the element of area corre-

sponding to any point x, y. Also let x, y be the co-ordinates

of the centre of gravity of the area, then

_ "ZydA Wydxdy , ,,.,,. , , » , .>

y = —^— =
. (substituting dx dy for dA)

;

.•. 2TryA = ztt jjydxdy = TTJ y^dx;

where the integral is supposed taken for every point round the

perimeter of the curve: but, from Art. 171, the integral at

the right-hand side represents the volume of the solid gene-

rated ; hence the proposition in question follows.

For example, the volume of the ring generated by the

revolution of an ellipse around any exterior line situated in

its plane is at once 2Tr'abc, where a and b are the semiaxes
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of the ellipse, and c is the distance of its centre from the axis

of revolution.

It may be noted that these results still hold if we suppose

the curve, instead of making a complete revolution, to turn

round the axis through any angle. For, let 6 be the circular

measure of the angle of rotation, and in the former case we
have

flys = J yds.

But fly is the length of the path described by the centre

of gravity, and 9 j yds is the area of the surface generated by
the cu7ve ; .'. &c.

In like manner the second proposition can be shown to

hold.

Again, Ghildia's theorems are still true if we suppose the

rotation to take place around a number of different axes in

succession ; in which case the centre of gravity, instead of

describing a single circle, would describe a number of arcs of

circles consecutively ; and the whole area of the surface ge-

nerated will still be measured by the product of the length of

the generating curve into the path of its centre of gravity

;

for this result holds for the part of the surface corresponding

to each axis of revolution separately, and therefore holds for

the sum.
.Again, in the limit, when we suppose each separate rota-

tion indefinitely small, we deduce the following theorem. If

any plane curve move so that the path of its centre of gravity

is at each instant perpendicular to the moving plane, then the

surface generated by the curve is equal to the length of the

curve into the path described by its centre of gravity.

The corresponding theorem holds for the volume of the

surface generated.

These extensions of Guldin's theorems were given by
Leibnitz {Act, Erud. Lips., 1695).

179. Expression for ITolume of any Solid.—The
method given in Art. 1 7 1 of investigating the volume bounded
by a surface of revolution can be readily extended to a solid

bounded in any manner. For, if we suppose the volume
divided into slices by a system of parallel planes, the entire

volume may, as before, be regarded as the limit of the sum
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of a num'ber of infinitely thin cylindrical plates. Thus, if we
suppose a system of rectangular co-ordinate axes taken, and
the cutting planes drawn parallel to that of a;y ; then, if A^
represent the area of the section made hy a plane drawn at

the distance z from the origin, the entire volume is denoted

by

taken hetween proper limits.

The area Az is to be determined in each case as a function

of s from the conditions of the bounding surface.

For example, to find the volume of the portion of a cone
cut ofE by any plane ; we take the origin at the vertex, and
the axis of 2 perpendicular to the cutting plane ; then, if B
denote the area of the base, and h the height of the cone, it

is easily seen that wo have

A^: B= z" : ¥, or ^^ = ^--

;

z^dz = - £ X h; as in Art. 169.
Jo 3

If the cutting planes be parallel to that of pz, the volume
is denoted by jA^dx; where A^ denotes the area of the sec-

tion at the distance m from the origin.

180. Volume of EUiptic Paraboloid.—Let it be
proposed to find the volume of the portion of the elliptic

paraboloid

- + — = 2Z,

P 1

cut off by a plane drawn perpendicular to the axis of the sur-
face. Here, considering z as constant, the area of the ellipse

- + - = 2z, by Art. 128, is 27rsy^.

Hence, denoting by c the distance of the bounding plane
from the vertex of the surface, we have

'c

F= ZTT'/pq zdz = nc^ -v/p?'
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This result admits of being exhibited in another form ; for if

£ be the area of the elliptic section made by the bounding
plane, we have

B = 2TrC'>y/pq.

Hence F = 5 circumscribing cylinder, as in paraboloid of re-

Tolution.

i8i. Tlie Ellipsoid.—Next, to find the volume of the

ellipsoid

«" y^ z'

a' 0^ c^

The section of the surface at the distance z from the origin

is the ellipse

?! r _ _ £_'

a»
"^

6' ~ ' ?'•

the area of this ellipse is

Trf I --jab, i.e. A, =ir(i --^]ab.

Hence, denoting the entire volume by V, we have

V=2Trab
i I -— ]dz =-Trabc.

J 3

182. Case of Obligne Axes.—It is sometimes more
convenient to refer the surface to a system of oblique axes.

In this case, if, as before, we take the cutting planes parallel

to that of xy, and if w be the angle the axis of z makes with

the plane of xy, the expression for the volume becomes

sin a» j Azdz,

taken between proper limits, where A^ represents the area of

the section, as in the former case.

For example, let us seek the volume of the portion of an

ellipsoid cut off hj any plane.
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Suppose BEjyE' to represent the section made by the

plane, and ABA'B' the parallel central section. Take OA,

OB, the axes of this section as axes of

X and y respectively ; and the conju-

gate diameter 0(7 as axis of z.

Then the equation of the surface

is

x" %f s=

Fig. 44.

where OA = a', 0B = h',0O= c'.

It will now be convenient to transfer the ongm to the

point C, without altering the directions of the axes, when the

equation of the surface becomes

x^ y^ 2s s-

The area At of the section, by Art. 128, is

T«'6'ft-i^; (3)

hence, denoting C'N by h, the volume cut off by the plane

BEB' is represented by

Tta'b' sin &>

Jo

2S S'

or

,-, . (K' h'\
wa sm (0-7 7, .V 30 y

But, by a well-known theorem,* we have

db'c' sin to = abc,

~i

where a, b, c, are the principal semiaxes of the surface.

Hence the expression for the volume V in question be-

comes

* Salmon's Geometry of Three Dimensions, Art. 96.
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or, denoting ^^ by 7c,

V=Trabck'fi-^. (5)

This result shows that the volume cut off is constant for all

sections for which Jc has the same value. Again, since

OiV
-pr—

-,
= 1- k, the locus of iVis a similar ellipsoid ; and we infer

(JO

that if a plane cut a constant volumefrom an ellipsoid, the locus

of the centre of the section is a similar and similarly situated

ellipsoid.

183. Elliptic Paraboloid.—The corresponding results

for the elliptic paraboloid can he deduced from the preceding

by adopting the usual method of such derivation : viz., by
taking

a^ =pc, V^ = qc,

and afterwards making c infinite ; observing that in this case

the ratio - becomes unity.

Making these substitutions in (4), it becomes

F = TT ^/pqt? ( I -A or -aW 'i/pq. since c = 03,

Hence, if a constant length be measured on any diameter

of an elliptic paraboloid and a conjugate plane drawn, then

the volume* of the segment out from the paraboloid by the

plane is constant.

Again, the area of an elliptic section by (3) is

Y2A A'\ TT

TTflsS — -—J, or—
\C C^J CB

2h h'

c sm. w\c c

• For a more direct investigatioa the student is referred to a memoir " On
some Properties of the Paraboloid," Quarterly Journal of Mathematics, June,

1874, by Professor Allman.
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On making the same substitutions, this becomes for the

paraboloid

sin<ij

Now, if we suppose a cylinder to stand on this section,

the volume of the portion cut ofE by the parallel tangent

plane to the paraboloid is obtained by multiplying the area

of the section by h sin to ; and, consequently, is

27r vpqlf,

i. e. is double the corresponding volume of the paraboloid.

This is an extension of the theorem of Art. i8o.

Examples.

1. Prove that the volume of the, segment cut from a paratoloid by any plane

is fths of that of the ciroumsoribia'g cone standing on the section made by the

plane as base. I.

2. A cylinder intersects the plane of xy in an ellipse of semiaxes OA = a,

OB = h, and the plane of az in an ellipse of semiaxes OA = a, OG = c; the

edges of the cylinder being parallel toBO; find the volume of the portion of the

cylinder bounded by the three co-ordinate planes. Am. i abc.

3. The axes of two equal right cylinders intersect at right angles ; find the

volume common to both. Ana. ^^ a', where a is the radius of either cylinder.

This surface is called a Groin.

184. Toluiae by Double Integration.—In the ap-

plication of the preceding method of finding volumes the

area represented by Ax, instead of being immediately known,
requires in general a previous integration ; so that the deter-

mination of the volume of a surface involves two successive

integrations, and consequently V is expressed by a double

integral.

Thus, as the area Ax lies in a plane parallel to that of yz,

its value, as in Art. 126, may generally be represented by
/ 2 <^y, taken between proper limits. Hence Fmay be repre-

sented by <

\\_\zdy']dx\

or, adopting the usual notation, by

l^zdydx,

taken between limits determined by the data of the question.
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The value of s is supposed given by a relation s =f{x, y),
by means of the equation of the bounding surface ; hence

lzdy=lf{x,y)dy.

In the determination of this integral we regard x as

constant (since all the points in the area have the same
value of x), and integrate with respect to y between its proper

limits.

Thus, if 2/1 and yo denote the limiting values of y, the

definite integral

fi'i

f{«:,y)dy

becomes a function of x : this function, when integrated

with respect to x between the proper limits, determines the

volume in question.

If Xi and Xa denote the limits of x, V may be represented

by the double integral

\

\f{x,y)dydx.

We shall exemplify this by a figure, in which we suppose

the volimie bounded by the plane of xy, by a cylinder

perpendicular to that plane, and
also by any surface.* Let
RPKQ represent the section of

the cylinder by the plane of xy ;

and suppose PMNQ to be the

section of the volume by a plane

parallel to yz at the distance x
from the origin. Let PL = yi,

QL = y„, then the area PMNQ
is represented by the integral

^zdy. fig- 45-

* The determination of a volume of any fonn is virtually contained in this.

For, if we suppose tie surface circumscribed by a cylinder perpendicular to tbe

plane of ry, the required volume wiU become the difference between two
lylinders, bounded by the upper and lower portions of the surface, respectively,

fee Bertrand, CaU. Int. § 447.
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The values* of y^ and yo in terms of x are obtained from
the equation of the curve JRPJRfQ.

Again, suppose P'MN'Q to represent the parallel section

at the infinitesimal distance dx from PMNQ, then the

elementary volume between PMNQ, and P'M'N'Q' is repre-

sented hy

dx zdy.

Now, if i2r and B!T' he tangents to the bounding curve,

drawn perpendicular to the axis ofa;, and if OT' = Xi, OT^Xo,
the entire volume is represented by

J a-„ J y„

dydx.

It should be observed that zdy dot represents the volume
of the parallelepiped whose height is z, and whose base is the

infinitesimal rectangle having dx and dy as sides ; and conse-

quently the volume may be regarded as the sum of all such
parallelepipeds corresponding to every point within the ai'ea

RPKQ.
It is also plain that we shall arrive at the same result

whether we integrate first with respect to x, and afterwards

with respect to y, or mce-versd ; i. e. whether we conceive the
volume divided into slices parallel to the plane of xz, or to
that of yz.

We shall illustrate the preceding by an example.

f

Suppose EPE'Q to be the circle

{x~ay+{y-by = P%

and the bounding surface the hyperbolic paraboloid

xy^cz;

* In our investigation we have assumed that the parallels intersect the
curve in. but two points each ; the general case is omitted, as the solution in
such cases can be rarely obtained, and also as the investigation is unsuited for
an elementary treatise.

I This and the next example are taken from Cauohy'a Applications Gcome-
triques du Calcul Infinitesimal, p. 109.
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then we have

and

zdy = -

Again,

"' !cydy=^ (y.» - 2/„') = 4" V^' -{<«- «/•

•. F =

2hx

a-j = « + /?, iTo = a - ^

;

\/ji^-[x-afxdx.

But

Now let X- a = R sin 0, and we get

jr^zir^ r
pog2 0(^ + ^ gin gj^g,

2

[" cos''0rf0 = -, [ ' cos^fl sin BdO = o,

F=7r
«Ji2'

Again, if for the cylindrical surface which has for its

base the circle we substitute a system of four planes x = Xo,

« = X, y = yo, y = F, we get

=1:1:.?*-

= }{X'-Xo^){Y^-yo')

= {X-Xo){T-yo)
V

= {X-x^{Y-tjo)

Xpyo + x„Y+ Xyo + XT
4c

Si + Sj + «3 + Zi
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in whicli ssi, z,, Za, Zi, are the ordinates of the four comer
points of the portion of the surface in question.

Again, from the well-known properties of the surface, in

order to construct the hyperbolic paraboloid it is sufficient

to trace the gauche quadrilateral "whose summits are the

extremities of the ordinates Zi, Zz, z,, ssi; then a right line

moving on a pair of opposite sides of this quadrilateral, and
comprised in a plane parallel to the other pair, will generate

the paraboloid in question.

Hence we arrive at the following proposition, :

—

Having traced a gauche quadrilateral on the four lateral

faces of a right prism standing on a rectangular base, if a
right line move on two opposite sides of this quadrilateral

and be parallel to the planes of the faces which contain the

other two sides, then the volume cut from the prism by the
surface so generated is equal to the product of the area of

the rectangular base of the prism by one-fourth of the sum
of the edges of the prism between the vertices of the
rectangle and those of the quadrilateral.

1 85. Double Integration.—From the preceding Article

it is readily seen that the double integral

II
f{x, y) dydx

can be represented geometrically by a volume ; and the deter-

mination of the double integral, when the limits are given, is

the same as the finding the volume of a solid with correspond-
ing limits.

For instance, the example in the preceding page is equi-

valent to finding the value of the double integral

wydxdy

taken for all values of x and y subject to the condition

(x-aY+ {y-hY-B^<o;
and similarly in other cases.

When the limits of x and y are constants, as in

ra/ rh'

J
Am, I/) dydx,

[18]
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the double integral represents the volume cut hy the surface

2 =/(«. V)

from the parallelepiped whose hase is the rectangle formed
by the lines

X = a, X -d, y = h, y = b'.

It is plain that in this case the order of integration is in-

different, as already seen in Art. 115.

186. It is sometimes more convenient to refer the curve

JRPH'Q to polar co-ordinates, in which case we conceive the

area divided into infinitesimal rectangles of the type rdrdO.

The corresponding parallelepiped is represented by
zrdrdO, and the expression for V becomes

= src?r(?0,

taken between proper limits.

For instance, if the bounding surface be a sphere, whose
centre is the origin, we have

2 = -v/a" - r",

and the equation becomes

vAly^F^^rdrdd;

but ya'-r» rdr = -\ (a" - r") 3.

Hence, if V denote the volume included between the

sphere and the exterior surface of the cylinder, we shall have

,\^{a^-r^)ide,

where we suppose each radius of the sphere to cut the

cylinder in but one point.

For example, let the base of the cylinder bo the pedal of

an ellipse whose major axis coincides with a diameter of the

sphere; then
>•' = a' cos'' 61 + h" sin^'e,

and r=\ (a' - Wf J sin' B dO.
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TT

If this be integrated between the limits o and - we get
2

the -yth of the entire volume ; hence the entire volume

9

Examples.

1. A sphere is cut by a right cylinder, the radius of whose hase is half that

of the sphere, and one of whose edges passes through the centre of the sphere

;

find the yolume conunon to both suriaces.

Am. ,

«
"being the radius of the sphere.

3 9

2. If the tase of the cylinder he the complete curre represented by the

equation r = a cos »9, where « is any integer, &id the vdume of the solid be-

tween the surface of the sphere and the external surface of the cylinder.

187. It is readUy seen, as in Art. 141, that the volume in-

cluded within the surface represented by the equation

\a cj

is abc X the volume of the surface

F{x, y, z) = o.

For, let - = «', ^ = «/, - = z, and we shall have
' a ' b "' c '

zdxdy - abcz' dxf dy'

,

and .*. J ^ zdxdy = abc l\z'dx'di/ ;

which proves the theorem.
Ilence, for example, the determination of the volume of

an ellipsoid is reduced to that of a sphere.

Again, if the point [x, y, 2) move along a plane, the cor-

responding point {xf, y', z') will describe another plane. From
this property the expression for the volume of an ellipsoidal

cap (Art. 1 82) can be immediately deduced from that of a
spherical cap (Axt. 17b).

[18 a]
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In like manner the volume included between a coiie en-

veloping an ellipsoid and the surface of the ellipsoid is reducible to

the corresponding volumefor a sphere.

1 88. Quadrature on the Sphere.—We next propose

to give a brief discussion of quadrature on a sphere, and
commence with the results on the subject usually given in

treatises on Spherical Trigonometry. In the first place,

since the area of a lune is to that of the entire sphere as the

angle of the lune to four right angles, the area of a luno of

angle A is represented by zlf'A ; where It is the radius of

the sphere, and A is expressed in circular measure.

Again, the area of a spherical triangle ABC is expressed

hy £,' {A + B + C - tt) ; for, the sum of the three lunes

exceeds the hemisphere by twice the area of the triangle, aa

is easily seen from a figure.

Hence, it readily follows that the area S of a spherical

polygon of « sides is represented by

S, = B''{A + B+ C + &0.- (M-2)n-);

A, B, C, &c., being the angles of the polygon.

This result admits of being expressed in terms of the

sides of the polar polygon ; for, representing these sides by
«', b', c', &c., we have

A = IT - a', B = TT - b', &c.,

and consequently

S = B^ZTT - {a' + 6' + c' +&c.)).

Or, denoting the perimeter of the polar figure by 8,

•2 + BS= 2TrB\ (6)

This proof is perfectly general, and holds in the limit,

when the polygon becomes any curve ; and, accordingly, the

area bounded by any closed spherical curve is connected with

the perimeter of its polar curve by the relation (6).

Again, the spherical area bounded by a lesser circle

(Art. 170) admits of a simple expression. If p denote the

circular radius of the circle, or the arc from its pole to its

circumference, the area in question is represented by

27rjB'(i - cos/o)

;
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for (see fig. Art. 1 70) we have

AN='AC-CN=R{i- cosp).

This result also follows immediately as a simple case of

equation 1(6).

Again, the area hounded hy the lesser circle and hy two
arcs drawn to its pole is plainly represented by

^^"0(1 - COSjo),

where a is the circular measure of the angle between the arcs.

We can now find an expression for the area bounded by
any closed curve on a sphere ; for

the position of any point P on the

surface can be expressed by means
of the arc OP (fcawn to a fixed

point, and of the angle FOX
between this arc and a fixed arc

through 0. These are called the

polar co-ordinates of the point, and
are analogous to ordinary polar

co-ordinates on a plane. pj 5

Now, let OP = p, and POX = w

;

then any curve on the sphere maybe supposed to be expressed

by a relation between p and w.

Again, suppose OQ to represent an infinitely near vector,

and draw PH perpendicular to OP; then, neglecting in

the limit the area PQB, the elementary area OPQ, by the

preceding is represented by

jB^(i - cos p)d(o.

Hence the area bounded by two vectors from ip

expressed by the integral ii* (i - coap)dii), taken between

suitable limits.

If the curve be closed, the entire superficial area becomes

P?\ (l - COSjo)<?a).

J

The value of cos p in terms of w is to be determined in

each case by means of the equation of the bounding curve.
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The integral B' cos p dto obviously represents the area

included between the closed curve and the great circle whioh
has for its pole.

The length of the curve can also be represented by a

definite integral ; for, regarding PliQ as ultimately a right-

angled triangle, we have in the limit,

PQ' = PE' + i2Q'- : also PE = Binpdo,.

Hence ds^ = dr' + sin'p day',

or ds = dto J sin"/o + f
—

= |tfu,jsinV+(|.J,

Again, it is manifest from (6) that the determination of

the length of any spherical curve is reducible to finding the

area of its polar curve, and vice versd.

Examples.

I. Find the area of the portion of the surface of a sphere which is inter-

cepted by a right cylinder, one of whose edges passes through the centre of the

sphere, and the ra^us of whose base is half that of the sphere.

Here, the equation of the base may be written in the form r = if sin a,

S being the radius of the sphere, and a being measured from the tangent to the

circular base.

Again, from the sphere we have r = B sinp; .•. p = a is the equation of

the curve of intersection of the sphere and the cylinder ; hence the area in

question is

2R' f (l - cos ai) da = iS^ ( - - I J

.

This being doubled gives the whole intercepted area = iiriS* — 4^2*.

This is the celebrated Florentine enigma, proposed by Vincent Viviani as a

challenge to the Mathematicians of his time, in the following form ;
—" Inter

venerabilia oHm Grsecise monumenta extat adhuc, perpetuo quidem duraturmn,

Templum augustissimum ichnographia circular! Almee Geometrias dicatum, quod

Testudine intus perfeote hemisphaerica operitur : sed in hac fenestrarum quatuor

sequales areas (circum ac supra basin hemisphserae ipsius dispositarum) taji con-

figuratione, amplitudine, tantaque industria, ac ingenii acumine stmt exstructsc,
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ut his detraotis, Buperstea curva Testudinis superficies, pretioso opere muaivo

omata, Tetragonismivere geometrioisit oapax."

—

Acta Mruditorum, Leipsio, i6g j.

[See Montucla, Histoire dea Mathimatiques, tome ii., p. 94.]

In general, if r -/{en) be the equation of the base of a cylinder, it is easily-

seen that the equation of the curre of its intersection with the sphere may be

written in the form ii sin p =/(i»).

For example, let the diameter of the right cylinder be less than half that

of the sphere ; then writing the equation of the base in the form r = a sin »,

where a is the diameter of the section, we get iJ sin p = a sin to, or sin p = k sin a
(where k is < i), as the equation of the curve of intersection of the sphere and

the cylinder.

Hence the intercepted area is denoted by

du.2S^] {l-'/l-K^ sin^a) du = v2P - 2iJ2 j -v/i - k' sin^ a

Hence the area in question depends on the rectification of an ellipse.

2. Find the area of the portion of the surface of the cylinder intercepted by
the sphere, in the preceding.

Here the area in question is easily seen to be represented by 2 Jzife, where
ds denotes the element of the curve which forms the base, corresponding to the

edge 2.

Now (i), when the diameter of the base is equal to the radius of the sphere,

we have
z = It cos o>, and ds = Sda ;

w

.'. area in question = 21^ I cos utfn) = ^IP ; i.e. the square of the diameter of
Jo

the sphere,

2. When the diameter is less than the radius of the sphere,

2 ids = 2a v' JJ2 — a- sin'oii^tii = 2a£ y' I — ic'sin^ai dca ; .". &c.

189. ttnadratnre of Surfaces.—In seeking the area

of a portion of any surface we regard it as the limit of a

number of infinitely small elements, each of which is con-

sidered as a portion of a plane which is ultimately a tangent

plane to the surface. Now let dS denote such an element of

the superficial area, and d<r its projection on a fixed plane

which makes the angle with the plane of the element ; then,

from elementary geometry, we shall have

d<T = cos 6dS, or dS = sec0c?(T.

Hence '^ ~\ ^^'^ ^^"f

taken between suitable limits.
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The applications of this formula usually involve double

integration, and are generally very complicated ; there is,

however, one mode by which the determination of the area of

a portion of a surface can he reduced to a single integration,

and by whose aid its value can in some csises be found ; viz.,

by supposing the surface divided into zones by a system* of

curves along each of which the angle d between the tangent

plane and a fixed plane is constant ; then, if dS denote the

superficial area of the zone between the two infinitely, near

curves corresponding to the angles 6 and 6 + d6; and, if dA
be the projection of this area on the fixed, plane, we shall

have dS = sec ddA.
If we suppose the surface referred to a rectangular

system of axes, the fixed plane being that of my ; and
adopting the usual notation, if we take A, ft, v as the direction

angles of the normal at any point on the surface, we get

for dS, the area of the zone between the curves corresponding

to V and V + dv, the equation

dS = seo vdA,

where A denotes the area of the projection on the plane of

ary of the closed curve defined by the equation v = constant.

Now whenever we can express the area A in terms of v

and constants, then the area of a portion of the surface,

bounded by two curves of the system in question, is reducible

to a single integration.

The most important applications of this method are

furnished by surfaces of the second degree, to which we
proceed to apply it, commencing with the paraboloid.

1 90. Q,uadratare of the Paraboloid.—Writing the

equation of the surface in the form

«' y^— + — = 23,
p q

* This method has heen employed in a more or less modified form by

M. Catalan, Liomiille, tome iv., p. 323, by Mr. JeUett, Camb. and Dub. Math.

Journal, vol. i., as also bv other writers. The curves employed are called

parallel curves by M. Lebesgnc, Liouville, tome xi., p. 332, and Curven isokliner

Normalen, by Dr. Schlbmilch.
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the equation of the tangent plane at the point {x, y, %) is

xX yY
H = Z + Z,

where X, Y, Z are the co-ordinates of any point on the plane.

Comparing this with the equation

Z cos X + F cos ju + Z cos V = P,

we sret cos X =— cos v, cos u =— cos v :

Buhstituting in the identical equation

cos'X + COS'jU + oos^r = I,

oc^ y^
we get - + - = tan%. (7)

Consequently the curve along which the tangent plane

makes the angle v with the tangent plane at the vertex is

projected on that plane into the ellipse

-,+'^' = tanV ,

The area A of this ellipse is Trpg'tan'v ; accordingly, we
have

dA = it;pgd{^zx^v) ;

.*. d8= Trpq seovdi^aiD^v) = trpq sec vt?(seo''v)

;

hence the area of the paraholoidal cap hounded hy the curve

V = a is

Ttpq seQvd{sQ(?v) = f 7rp2'(seo'a - 1).

Also the area of the belt* between the curves

V = a and V = a' is f 7rj32'(seo'o' - sec' a). (8)

* This form for the quadrature of a paraboloid is, I believe, due to Mr. JeUett

:

see Gmnb. and Bub. Math. Journal, vol. i. p. 65. The proof given above ia in

a great measure taien from Mr. Alinan's paper in the Quarterly Journal, already

referred to.
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191. ttnadratare of the KHIlpsoid.—Proceeding in

like manner to the ellipsoid

a^ y^ z^

a* I' c-

the equation of the tangent plane at the point (on, y, s) is

Xm Yv Zz

a" If (?

Hence, comparing with the equation

X cos A + P" cos ju + ^ cos v = P,
we get

COSX = — - cos V, cos U = 7T - COS V.
a^z z

Hence, we have

cos'V— -7 + 77 p= cos' A + cos'u = sm'v

;

or, substituting i ^
- — for -,

a' W <?

-
1 a^ sm'v + c' cos'

a*
v') + |jf6'sin'v+ c'cos'vV

This shows that the projection on the plane of xy of

a curve along which v = constant is an ellipse.

Again the area A of this ellipse is

TTg' b' sin' V

(a' sin'v + c' cos' v) 4 (6' sin'v + c' cos'v)*'

and accordingly, the area dA of the elementary annulus

between two consecutive ellipses is

j„_^
I

sin'v
I

dv \ (a' sin' V + c' cos'v)* (6' sin' 1/ + e* cos'v)^)

The corresponding elementary ellipsoidal zone dS is

represented by

ira'J' d { sin'v

cosv «?>;((«' sin'v + c'cos'v)^6'8in'i/ + c'cos'v)*)
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Now, if 8 denote the superficial area* between two

curves corresponding to " = a and v = a, after one or two

reductions, it is easily seen that

S = -^a'b'c'{I+r), (9)

, 7- f

"

sin V dv
~

J„
(6' sin^ V + c" cos" v)= (a* sin^ v + c^cos' v)^'

[»' sin V c?i»

"]„(«" sin' V + c" cos" I/) * (6" sin" v + c" cos "v)
*

'

It is easily shown that the former of these integrals is

represented hy an arc of an ellipse, and the latter by an arc

of a hyperbola ; it being assumed that a>h> c.

For, assuming c? - <? = c?^, and J" - c" = J"e'', and
making cos v = «, we get

a\y

dx

cosa (i -e^x'fii -e^xy

,^ (i -e'x'')i{i-e"xY

Again, let ex = sin d in the former integral, and e'x = sin 9
in the latter, and we get

7 =
âb'

d9

an]{e"

(e" - /" sin"0)i'

dd

e^ sin" 6)^

Now, since e > e', the former integral represents an
arc of an ellipse, and the latter an arc of a hyperbola. (See

Ex. 19, p. 249).

* This form for the quadrature of an ellipsoid ia given by Mr. Jellett in

the memoir already referred to. He has also shown that the ellipse and the
hyperbola in question are the focal conies of the reciprocal ellipsoid ; a result

wMch can be easily arrived at from the forms of I and /' given above.

For application to the hyperboloid, and further development of these results,

the student is referred to Mr. Jellett's memoir.
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192. Integration over a Closed Surface.—We shall

conclude this Chapter with the consideration of some general

formulaB in double integration relative to any closed surface.

We commence by adopting the same notation as in Art. 189,

where A, ju, v are taken as the angles which the exterior

normal at the element dS makes with the positive directions

of the axes of x, y, s, respectively.

Again, let each element of the surface be projected on

the plane of xy, and suppose* for simplicity that each 2 ordi-

nate meets the surface in but two points : then, if the indefi-

nitely small cylinder standing on any element dA in the

plane of xy intersects the surface in the two elementary por-

tions dSi and dSt (where dSi is the upper, and dS^ the lower

element), and if vi and vj be the corresponding values of v, it

is plain that vi is an acute, and Vi an obtuse angle, and we
have

dA = cos vidSi = - cos VidS^.

Hence, if we take into account all the elements of the surface,

attending to the sign of cos v, we shall have

J/cos vc^/S = o.

In like manner we get

\lQOs\dS = o, and J/cos/i£^S= o;

the integrals extending in each case over the whole of the

closed curve

These formulae are comprised in the equation

II (a cos A + /3 cos ;« + 7 COS v) dS = o. (10)

Again, if s, and Sj be the values of z corresponding to the

clement dA, then, denoting by rfFthe element of volume
standing on dA and intercepted by the surface, we plainly

have

dV = (si - Zt}dA = sidSi cos vi + z^dSz cos v^,

* It it easily seen that tlis and the following demonstrations are perfectly

-general, inasmuch as each ordinate must meet a closed surface in an eyen number
of points, which may te considered in pairs.
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and the sum of all such elements, that is, the whole volume,

is evidently represented by

^\z cos vdS.

Hence, denoting the whole volume hy V, we have

V = \\x cos\dS = jjy cos nd8 = jj z cos vdS ;

the integrals, as before, being extended over the entire

surface.

Again, it is easily seen that we have

jj X COS vd8 =0, jj y cos vdS = o, J/ a; cos fidS = o,

l\ycoa\d8=o, jj s co3\dS= o, jj z cos fidS = o.

For, as in the first case, it readily appears that the elements

are equal and opposite in pairs in each of these integrals.

These results are comprised in the equation

jj{ax + Pi/ + yz) {a cos X + /3' cos ;u + y cos v) d8

= (aa' + |3i3' + 77') r. (11)

Por a like reason, we have

jjxi/ cos vd8 = o, j j zx cos nd8 = o, j j i/z cosXd8 = o.

Also //»' cos vd8 = o, // »' coSfjid8 = o, &c.

Next, let us consider the integral

jjxz cos vd8.

This integral is equivalent to H xdV; consequently, if

S, y, i, be the co-ordinates of the centre of gravity of the

enclosed volume V, we get l\ as cos vd8 = l\xdV = xV; in

like manner \\ xz cos \d8 = zV.
Again, the integral

\\ z^ cos vd8

consists of elements of the form (si' - z^) dA ; but

(Si* - Z^) dA = (Zi + Sa) (Si - Za) dA

= (zi + Zi)dV.
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'^dr=2zV.

But the z ordinate of the centre of gravity of (?F is

plainly ~ -", and consequently

s'cos vd8= 2 -—
In like manner it can be shown that

//«' cQsXdS = zxV, jj
y^

cos fidS = 2yV.

Accordingly we have

Vx - iJJ«' fX)^\dS = \\xy oos /xdS = ^^xzcoavdS,

Vy = liyx coaXdS = iJly^coa/jid8=SSyzoosvd8,

Vs = Ij zx cos \d8 = \\zy oosfidS = ^jjz'^ cos vdS.

193. Expression for Volume of a Closed Surface.—^Next, if we suppose a cone described with its vertex

at the origin 0, and standing on the elementary base dS,

its volume is represented (Art. 169) by ^pd8, where _p is the

length of the perpendicular drawn from to the tangent

plane at the point.

Also, if r be the distance of from the point, and y the

angle which r makes with the internal normal, we have

"jj = r cos 7.

Hence the elementary volume is equal to -J-r cosy(?;S,and

it is easily seen that if we integrate over the entire surface,

the enclosed volume is represented by

\l\r cosydS.

1 94. Again, ifwe suppose a sphere of unit radius described

with as centre, and if diD represent the superficial portion

of this sphere intercepted by the elementary cone standing on

dS, then it is easily seen that cos ydS ^r'du;

COSydS
.: db) = '-—

.

r^

Now if be inside the closed surface, and the integral

be extended over the entire surface, it is plain that // rfw = 4!r,

being the surface of the sphere of radius unity

;

\cosyd8
1
—i 4;r.

ir
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Again, if te outside the surface, the cone will cut the

surface in an even number of elements, for which the values

of cos 7 win be alternately positive and negative, and, the

corresponding elements of the integral being equal but with
opposite signs, their sum is equal to zero, and we shall have

cos 7 dS
-.— = o.

If be situated on the surface, it follows in like manner
that

w
—-^ dS = iir.
T

Hence, we conclude that

'cos 7

W''
dS = 47r, 2ir, or o, (12)

according as the origin is inside, on, or outside the surface-

The multiple integrals introduced into this and the two
preceding Articles are principally due to Gauss.

The student will find some important applications of
this method in Bertrand's Gale. Int., §§ 437, 455, 456,
476, &c.
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Examples.

1

.

A sphere of 15 feet radius is cut by two parallel planes at distances of

3 and 7 feet from its centre ; find the superficial area of the portion of the sur-

face included between the planes approidmately. Ans, 376.990855. feet.

2. Being given the slant height of a right cone, find the cosine of half its

vertical angle when its volume is a maximum. ^ i
Ans. .

3. Prove that the volume of a truncated cone of height h is represented hy

irh— (i2^ + iJr + r'),

where E and r are the radii of its two bases.

4. A cone is circumscribed to a sphere of radius if, the vertex of the cone
being at the distance -D from the centre ; find the ratio of the superficial area of
the cone to that of the sphere. If — IP

Ans. —=rT—•.

4D£
5. Two spheres, A and S, have for radii 9 feet and 40 feet ; the superficial

area of a third sphere C is equal to the sum of the areas of A and £ ; calculate

the excess, in cubic feet, of the volume of C over the sum of the volumes of A
and 5. Ans. 17558.

6. If any arc of a plane curve revolve successively round two parallel axes,

show that the difference of the surfaces generated is equal to the product of the

length of the arc into the circumference of the circle described by any point on
either axis turning round the other.

If the axes of revolution lie at opposite sides of the cuito, the sum of the

surfaces must be taken instead of the difference.

7. Find, in teims of the sides, the volume of the solid generated by the

complete revolution of a triangle round its side e.

Air s(a - a)(s—i)(s- c)

Ana. 5 -i-. — '.

3 c

8. Apply Guldin's theorem to determine the distance, from the centre, of.the

centre of gravity, (i) of a semicircular area
; (2) of a semicircular arc.

Ans. (i)±., (2)-.V ^

9. If a triangle revolve round any external axis, lying in its plane, find an

expression for the area of the surface generated in a complete revolution.

10. Prove that the volume cut from the surface

a" = Ax^ + By^

E xy, is ——th pi
w + I

the plane section, and terminated by the plane of xy.

by any plane parallel to that of xy, is th part of the cylinder standing on
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11. A cone is oiroumsoribed to a sphere of 23 feet radius, the vertex of the

cone being 265 feet distant from the centre of the sphere ; find the ratio of the

superficial area of the cone to that of the sphere.

12. The axis of a right circular cylinder passes through the centre of a
sphere ; find the volume of the solid included between the concave surface of the
sphere and the convex surface of the cylinder.

Ans, — , where is the length of the portion of any edge of the cylinder

intercepted by the sphere.

This question is the same as that of finding the volume of the solid generated

by the segment of a cu'cle cut off by any chord, in a revolution round the
diameter parallel to the chord.

13. Find the volume of the solid generated by the revolution of an arc of a

circle round its chord. Ans. zira j Co !

,

where a = radius, c = distance of chord from centre, and 003 a = -.
a

In this we suppose the arc less than a semicircle : the modification when it

is greater is easily seen.

14. If the ellipsoid of revolution,

and the hyperboloid

ii;« + s^ +
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1 8. Find the area of a spherical triangle ; and prove that if a curve traced

on a sphere have for its equation sin K = f(l), K denoting latitude, and I lon^-
tude, the area between the curve and the equator = lf(l)dl.

19. ShowUiat the volume contained between the surface of a hyperboloid

of one sheet, its asymptotic cone, and two planes parallel to that of the real

axes, ia proportional to the distance between those planes.

20. Find the entire volume of the surface

e)^(r)^e)'-- ^-?^.

21. The vertex of a cone of the second degree is in the surface of a sphere,

and its internal axis is the diameter passing through its vertex ; find the volume
of the portion of the sphere intercepted within the cone.

22. Prove that the volume of the portion of a cylinder intercepted between
any two planes is equal to the product of the area of a perpendicular section

into the distance between the centres of gravity of the areas of the bounding
sectious.

2 J. If ^ be the area of the section of any surface made by the plane of xij,

prove, as in Ait. 192, that

^ I COS vdS,

the portion 1

24. If a right cone stand on an ellipse, prove that its volume is represented

the integral being extended through the portion of the surface which lies above

the plsne of xy.

by

- (0^.0^')8sin'acosa;

where is the vertex of the cone, A and A' the extremities of the major axis

of the ellipse, and a is the semi-angle of the cone.

25. In the same case prove that the superficial area of the cone is

^ {OA + OA") [OA . OA')i sin a.
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CHAPTER X.
I

.

INTEGRALS OF INERTIA.

: .U- f

195. Integrals of Inertia.—The following integrals are

of STicli frequent occurrence in mechanical investigations,

that it is proposed to give a hrief discussion of them in this

Chapter.

If each element ofthe mass of any solid hody be supposed

to he multiplied hy the square of its distance from any fixed

right line, and the sum extended throughout every element
of the body, the quantity thus obtained is called the moment
of inertia of the hody with respect to the fixed line or axis.

Hence, denoting the element of mass by dm, its distance

from the axis by p, and the moment of inertia by /, we have

I='2p^dm. (i)

In like manner, if each element of mass of a body be
multiplied by the square of its distance from a plane, the
sum of such products is called the moment of inertia of the

body relative to the plane.

If the system be referred to rectangular axes of co-

ordinates, then the expression for the moment of inertia

relative to the axis of s is obviously represented by

S {x^ + 'if') dm.

Similarly, the moments of inertia relative to the axes of
X tad y are represented by S (y' + s") dm and S (ar* + z^) dm,
respectively.

Again, the quantities ^x'dm, ^y^dm, "Ez^dm, are the
moments of inertia of the body with respect to the planes
of yz, xz, and xy, respectively. Also the quantities "Sixydm,
."SiSxdm, "Siyzdm, are called the products of inertia relative tO
the same system of co-ordinate axes.

In like manner the moment of inertia of the hody with
reference to a point is ^r^dm, where r denotes the distance of
the element dm from the point. Thus the moment of inertia

relative to the origin is S (»' + y" + z') dm.
TlQal
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196. noments of Inertia relative to Parallel
Axes, or Planes.—The following result is of fundamental
importance :

—

The moment of inertia of a body with respect to

any axis exceeds its moment of inertia toith respect to a parallel

axis drawn through its centre of gravity, by the product of the

mass of the body into the square of the distance between the

parallel axes.

For, let I be the moment of inertia relative to the axis

through the centre of gravity, 1' that for the parallel axis,

M the mass of the body, and a the distance between the axes.

Then, taking the centre of gravity as origin, the fixed

axis through it as the axis of z, and the plane through the

parallel axes for that of zx, we shall have

I='2,{a? + f)dm, I' = •2,{{x + a)' + y'']dm.

Hence J' - J= za'Saidm + a^'2dn^ = d?M,

since "Sixdm = o as the centre of gravity is at the origin

;

.-./' = 7+ a'Jf. (2)

Consequently, the moment of inertia of a body relative to

any axis can be foimdwhen that for the parallel axis through

its centre of gravity is known.
Also, the moments of inertia of a body are the same for

all parallel axes situated at the same distance from its centre

of gravity.

Again, it may be observed that of all parallel axes that

which passes through the centre of gravity of a body has the

least moment of inertia.

It is also apparent that the same theorem holds if the

moments of inertia be taken with respect to parallel planes,

instead of parallel axes.

A similar property also connects the moment of inertia

relative to any point with that relative to the centre of

gravity of the body.

In finding the moment of inertia of a body relative to

any axis, we usually suppose the body divided into a system

of indefinitely thin plates, or lamince, by a system of planes

perpendicular to the axis ; then, when the moment of inertia

is determined for a lamina, we seek by integration to find

that of the entire body.
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197. Radius of ©yration.—If k denote tlie distance

from an axis at which the entire mass of a body should be

concentrated that its moment of inertia relative to the axis

may remain unaltered, we shall have

me = I=^fdm. (3)

The length h is called the radius of gyration of the body
with respect to the fixed axis.

In homogeneous bodies, which shall be here treated of

principally, since the mass of any part varies directly as its

volume, the preceding equation may be written in the form

where dV denotes the element of volume, and V the entire

volume of the body.

Hence, in homogeneous bodies, the value of k is indepen-

dent of the density of the body, and depends only on its form.

We shall in our investigations represent the moment of

inertia in the form j-_ -jij-ji.

and, it is plain that in its determination for homogeneous
bodies xve may take the element ofvolume for the element of mass,
and the total volume of the body instead of its mass.

Also, in finding the moment of inertia of a lamina, since its

radius of gyration is independent of the thickness of the lamina,
we may take the element of area instead of the element of

mass, and the total area of the lamina instead of its mass.

1 98. If ^ and B be the moments of inertia of an infi-

nitely thin plate, or lamina, with respect to two rectangular
axes OX, OY, lying in its plane, and if G be the moment of
inertia relative to OZ drawn perpendicular to the plane, we
^^^^ C = A + B.

(4)

For, we have in this case A = 'S^y'^dm, B = 'S.x'dm, and
C= ^{x'' + y'')dm.

Again, for every two rectangular axes in the plane of the
lamina, at any point, we have

^x^dm + ^y'dm = const.

Hence, if one be a maximum, the other is a minimum, and
vice versd.

We shall, in all investigations concerning laminse, take C
for the moment of inertia relative to a line perpendicular to
the lamina.
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igg. Uniform Rod, Rectangular IJamina.—We
commence with the simple case of a rod, the axis being perpen-

dicular to its length, and passing through either extremity.

Let X be the distance of any element dm of the rod from
the extremity ; then, since the rod is uniform, dm is propor-

tional to dx, and we may assume dm = fxdx: hence, the

moment of inertia Zis represented by n'SiX^dx, or by

^I'.V., -^
where I is the length of the rod

Hence 7 = "-- = If -.

3 3

If the axis be drawn through the middle point of the rod,

perpendicular to its length, the moment of inertia is plainly

the same for each half of the rod, and we shall have in this case

I=M-.
12

Next, let us take a rectangular lamina, and suppose the

axis drawn through its centre, parallel to one of its sides

Here, it is evident that the lamina may be regarded as

made up of an infinite number of parallel rods of equal

length, perpendicular to the axis, each having the same
radius of gyration, and consequently the radius of gyration

of the lamina is the same as that of one of the rods.

Accordingly, we have, denoting the lengths of the sides

of the rectangle by 2a and ib, and the moments of inertia

round axes through the centre parallel to the sides, by A and

B, respectively,

A=-Mb\ B=-Ma\ (5)
3 3

Hence also, by (4), the moment of inertia round an axis

through the centre of gravity and perpendicular to the plane

of the lamina, is

- M{a' + 6'). (6)

By applying the principle of Art. 196 we can now find

its moments of inertia with respect to any right line either

lying in, or perpendicular to, the plane of the lamina.
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200. Rectangular Parallelepiped.— Since a parallel-

epiped may be conceived as consisting of an infinite number
of laminse, each of which has the same radius of gyration

relative to an axis drawn perpendicular to their planes, it

follows that the radius of gyration of the parallelepiped is

the same as that of one of the laminte.

Hence, if the length of the sides of the parallelepiped be

2a, 2b, and 2c, respectively ; and, if A, B, C be respectively

the moments of inertia relative to three axes drawn through
the centre of gravity, parallel to the edges of the parallel-

epiped, we have, by the last,

A = -M{h^ + c'), S = -M{c' + a'), C = -M{a'+b'). (7)

201. Circular Plate, Cylinder.—If the axis be
drawn through its centre, perpendicular to the plane of a

circular ring of infinitely small breadth, since each point of

the ring may be regarded as at the same distance *• from the

axis, its moment of inertia is r'dm, where dm represents its

mass.

Hence, considering each ring as an element of a circular

plate, and observing that dm = fi2Trrdr,-w6 get for C, the

moment of inertia of the circular plate of radius a,

C=2 TTfi r'dr= -'—- = M-

Oonsequently, the moment of inertia of a ring whose
outer and inner radii are a and b, remeetively, with respect to

the same axis, is
/^

a' -¥ ^^a^ + V
irdr = TTfi = M .

'""^iJ» 2

Again, by (4), the moment of inertia of a circular plate

about any diameter is M—, since the moments of inertia are
4

obviously the same respecting all diameters.

In like manner, the moment of inertia of a ring relative

to any diameter is

^^a' + J'
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Also, the moment of inertia of a. rigkt cylinder about its

axis of figure is

M-,

a being the radius of the section of the cylinder.

Again, the moment of inertia relative to any edge of tho

cylinder is - Ma^.

202. Right Cone.—To find the moment of inertia of a

right cone relative to its axis, we conceive it divided into an

infinite number of circular plates, whose centres lie along the

axis ; and, denoting by as the distance of the centre of any

section from the vertex of the cone, and by a the semi-angle

of the cone, we have

2 Jo 10 '

where h is the height of the cone, and b the radius of its base.

Hence, since by Art. 169 the volume of the cone is - J'A,

we have

(8)i=^m\
10

203. Elliptic Plate.—Next let us suppose the lamina

an ellipse, of semi-axes a and h ; and
let A and B be the moments of inertia

relative to these axes, respectively.

Describe a circle with the axis

minor for diameter, and suppose the

lamina divided into rods by sections

perpendicular to this axis. Let B^ be

the moment of inertia for the circle

round its diameter.

Then, denoting by dB and dB^ the moments of inertia of

corresponding rods, we have

dB-.dB^ {npY : (np'Y = {pay : {oby = a' : 6»

;

.-. B:B'=a^:b\

Fig- 47.
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But B', by Art. 201, is
;

^ M'a" M /
46 4

ilf
Similarly, A=— V.

Hence the moment C round a line tkrough the centre of

the ellipse, perpendicular to its plane, is

M
f («' + i')- (9)

It is plain, as hefore, that the expression for the moment
of inertia of an elliptical cylinder relative to its axis is of the

same form.

204. Sphere.—If we suppose a'sphere divided into an
infinite number of concentric spherical shells, the moment of

inertia of each shell is plainly the same for all diameters

;

and accordingly, representing the mass of any element of a

shell by dm, and by x, y, z any point on it, we have

'S.x'dm = "Siy^dm = '^z'dm.

But 2(«' + y' + z')t?OT = Sr^^w;

2
.*. S («" + y') dm = -'2, r^dm.

Hence, (a) the moment of inertia of a shell whose radius

2
is r with respect to any diameter is - mr'^, where m repre-

sents the mass of the shell.

Again, (6) for a solid sphere of radius H, since the volume ^
of an indefinitely thin shell of radius r is ^irr^dr, we get^ ^^-

; T- K

r«

^r'^dv = 47r
T' _ Z)5 _ -J T7-D2 i

5 5

"When this is substituted, the moment of inertia of a solid

homogeneous sphere relative to any diameter is found to be

-MR\ (10)
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205. Ellipsoid.—Let the equation of an ellipsoid be

«' w" z'

and suppose A, B, C to be the moments of inertia relative to

the axes a, b, e, respectively ; then

C = fi-^ix^ + f)dr = n\\\{x' + f) dxdyds.

Now, let

and we get

C = fialc
I

{a^x'^ + 6V') dafdi/dz',

where the integrals are extended to all points within the

sphere

x" + i/^ + z" = I.

But, by the last example we have

x'^'dx'dy'dz' = y"dsifdi/dz' =
15

•. C = -^ TTfiahc (a' + b') = — (a' + b').
15 ^ 5

^ '
(II)

1:1 like manner.

M M
5

'
5

It should be remarked that the moments of inertia of the

ellipsoid with respect to its ^&q principal planes are

— ffl% — 6% — c% respectively.



Moments of Inertia of a Lamina. 299'

206. moments of Inertia of a IJaniina.—Suppose

that any plane lamina is referred to two rectangular axes

drawn through any origin 0, and that a is the angle which

any right line through 0, lying in the plane, makes with the

axis of » ; then, if I be the moment of inertia of the lamina

relative to this line, we have

/ = 'Sip'dm = 2 (y cos a - a; sin aYdm

= cos^a '^y'dm + sin^aS«'rfOT - 2 siu a cos a "S^xydm

= « cos'a + 5 sin'a - 2A sina cosa; (12)

where a and h represent the moments of inertia relative to

the axes of x and y, respectively ; and h is the product of

inertia relative to the same axes.

Again, supposing X andFto be the co-ordinates of a point

taken on the same line at a distance R, from the origin, we

get cos o = -5-, sin a = -5- ; and, consequently,

IR' = aX' + bY' - 2h XT.

Accordingly, if an ellipse be constructed whose equation is

aX' + bY' - 2AXZ= const., (13)
we have

IR' = const.

;

and, consequently, the moment of inertia relative to any line

drawn through the origin varies inversely as the square of

the corresponding radius vector of this ellipse.

The form and position of this ellipse are evidently inde-

pendent of the particular axes assumed ; but its equation is

more simple if the axes, major and minor, of the ellipse had
been assumed as the axes of co-ordinates. Again, since in

this case the coefBcient oi XY disappears from the equa-
tion of the curve, we see that there exists at every point in

a body one pair of rectangular axes for which the quantity

h, or "Sixydm = o.

This pair of axes is called the principal axes at the
point ; and the corresponding moments of inertia are called the

principal moments ofinertia of the lamina relative to the point.
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Again, if A and £ represent the principal moments of

inertia, equation (12) becomes

J= ^ COS'a + P sin'a. (14)

Hence, for a lamina, the moment of inertia relative to

any axis through a point can be found when the principal

moments relative to the point are determined.

The equation of the ellipse (13) becomes, when referred

to the principal axes,

AX" + BY" = const.

207. momental Ellipse.—Since the moments of inertia

for all axes are determined when those relative to the centre

of gravity are known, it is sufficient to consider the case

where the origin is at the centre of gravity. With reference

to this case, the ellipse

AX'' + BY'' = const. (15)

is called the momental ellipse of the lamina.

Again, if two different distributions of matter in the

same plane have a common centre of gravity, and have the

same principal axes and principal moments of inertia, at

that point, they have the same moments of inertia relative to

all axes.

This is an immediate consequence of (14). Hence it is

easily seen that the moments of inertia for any lamina are

M
the same as for the system of four equal masses, each —

,

placed on the two central principal axes, at the four dis-

tances + a and + h, from the centre of gravity, where a and b

are determined by the equations

A = -Mh\ B=-Ma\
2 2

Again, if two systems of the same total mass, in a plane,

have a common centre of gravity, and have equal moments
of inertia relative to any three axes, through their common
centre of gravity, they have the same moments of inertia for

all axes.
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This follows immediately since an ellipse is determined
when its centre and three points on its circumference are

given.

Again, it may he observed that the houndary of an
elliptical lamina may be regarded as the momental ellipse of

the lamina.

For, if / he the moment of inertia relative to any
diameter making the angle a with the axis major, we have

But, hy Art. 203,

I = A coa'a + B sin'a.

A = ^l^ B = ^a^;
4 4

M
.\ 1= — (6" cos'a + 0' sin' a)

4
^ ^

M ,,,/cos'o sin"
a'

4 V a* b

~
4 r'

'

Hence the moment of inertia varies inversely as the square

of the semi-diameter r ; and, consequently, the ellipse may he
regarded as its own momental ellipse. '

208. Products of Inertia of IJainina.—Suppose the

lamina referred to its principal axes at a point ; and let p
and q be the distances of any element dm from two axes,

which make the angles a and (5 with the axis of « ; then we
have

^pqdm = 2 («/ cos a - a; sin a) (y cos /3 - « sin j3) dm

= eosa cos j3 ^y'dm + sin a sinj3 ^ai^dm

- sin (a + (5) "SiXydm

= A Gosacos^ + B sin a sin j3,

since A = ^y^dm, B = '2,a?dm, and "Sixydm = o.

Hence, if '2pqdm = o, we have

A cos a cos jS + 5 sin a sin]3 = o,
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and accordingly the axes are a pair of conjugate diameters
of tlie momental ellipse

AX^ + SY^ = const.

Hence, if two laminae in the same plane have for any point

two pairs of axes for which ^pqdm = o and ^p'^dm' = o,

they have the same principal axes at the point. Tlus follows

from the easily established property, that if two ellipses have

two pairs of conjugate diameters in common, they must be

similar and coaxal.

2og. Triangular JLamina and Prism.—Suppose a

triangular lamina, whose sides are a, b, c, to be divided into

a system of rods parallel to a Side a
; j^

and let A represent the moment of

inertia relative to a line parallel to

the side a, and drawn through the

opposite vertex; also let p be the

perpendicular of the triangle on
the side a, and x the distance of an
olementary rod from the vertex; then

we have, since the mass dm of the

elementary rod may be represented by /x

—

dx^

Jr

decA = Jix'dm = u.'SiK'— dx
P

y^ X
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relative to three parallels to tlie sides, drawn through the

centre of gravity of the lamina, we have, by (2),

^0 = -^ Mp\ 5„ = ^ Mi\ Co = ^^MrK
. (16)

Also, if Ai, Bi, Ci, he the moments of inertia relative

to the sides a, b, c, respectively, it follows, in like manner,

from (2), that

A.-^^Mp', B,= ^-Mq\ C, = ^Mr\ (17)

Again, it is readily seen that the values of A, An, Ai, &c.,

are the same as if the whole mass M were divided into three

equal masses, placed respectively at the middle points of the

sides of the lamina.

Consequently, by Art. 207, the moments of inertia of the

triangular lamina relative to all axes are the same as for

M
three masses, each —

,
placed at the middle points of the

sides of the triangle.

Hence, if I be the moment of inertia of a triangular

lamina with respect to the perpendicular to its plane drawn
through its centre of gravity, we have

7=^ilf(«^ + 6' + 0. (18)

This expression also holds for the moment of inertia of a
right triangular prism with respect to its axis*

In like manner the moments of inertia of the triangular

lamina relative to the three perpendiculars to its plane,

drawn through its vertices, are

i*(5H.-f), '-m{,.,'JS), iif(.-.»--f)i

and the same expressions hold for a triangular prism relative

to its edges.

• By the axis of a prism is understood the right line drawn through its

centre of gravity parallel to its edges.
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2IO. Momental Ellipse of a Triangle.—It can be
shown witliout difficulty that the ellipse which touches at the
middle points of the sides

may he taken for the mo-
mental ellipse of the triangle.

For, let X, y, z be the

middle points of the sides,

and it is easily seen that o

is the centre of this ellipse

;

also, if I, It, Is be the
moments of inertia of the ^^' "*''

lamina relative to the lines ax, hy, cz, respectively, it can be

readily shown from (17), that we have

/

I: I,: J3
{axy '

{byf
' {czy

{oxy •

{oyf
• {ozy

Accordingly, by Art. 207, the ellipse xyz may be taken for

the momental ellipse of the lamina.

211. TTetrahedron.—If a solid tetrahedron be supposed

divided into thin laminae parallel to one of its faces, and if

A, B, C, I) represent its moments of inertia with regard

to the four planes drawn respectively through its vertices

parallel to its faces ; then, denoting the areas of the corre-

sponding faces by a, b, c, d, and the corresponding perpen-

diculars of the tetrahedron by p, q, r, s, respectively, it is

easily seen, as in Art. 209, that we shall have

^2 a rp

A = '2x^dm= u.'2,a?a—dx = u.-i\ x*dx

In like manner we have

V
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Again, if Ao, Bo, Go, Do te the corresponding moments of

inertia relative to the parallel planes drawn through the

centre of gravity of the tetrahedron, we have, hy (2),

Ao = -^Mp\ Bo
80
Mq\ Co=i-^Mr% Bo .^MsK (19)

Also, if Ai, Bi, Ci, Di be the moments of inertia relative

to the four faces of the tetrahedron, we have

A, =— Mp\ B,=— Mq\
10 10

Ci =— Mr\ Di =— M^. (20)
10 10 ^ '

212. Solid Ring.*—If a plane closed curve, which is

symmetrical with respect to an axis AB, he made to revolve

round a parallel axis, lying in

its plane, hut not intersecting the

curve, to prove that the moment
of inertia I of the generated solid,

taken with respect to the axis of

revolution, is represented by

Mih' + 3F),

where M is the mass of the solid,

h the distance between the parallel

axes, and It the radius of gyration

of the generating area relative to its axis.

For, if the axis of revolution be taken as the axis of x,

and, if y, Y be the distances of any point P within the

generating area from AB, and from OX, respectively ; and,

if dA be the corresponding element of the area, then the

volmne of the elementary ring generated by dA is 2n- YdA,
and its mass 27rju TdA ; hence the moment of inertia of this

elementary ring, relative to the axis of X, is zwfiY^dA.
Accordingly, we have

1= 2iTpL'2,Y^dA = 2irn'2{h + yYdA

= 27r/iS (A3 + 2,h^y + iJi'f + y^) dA.

* The theorems of this Article were given by Professor Townsend in the
Quarterly Journal of Mathematics, 1869.

[20]
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Moreover, since the curve is symmetrical with respect to

the axis AB, it is easily seen that we have

"SiydA = o, ^y'dA = o.

Also, by definition, ^y'dA = AF.

Hence 1= 2iriihA{h^ + z¥).

Again, by Art. 177, M= zirfihA ;

.: I=M{h'' + 3k'). (21)

This leads immediately to some important cases.

Thus, for example, the moment of inertia of a circular

ring, of radius a, round its axis is

mU' + ^J).

Again, if a square of side a revolve round any line in its

plane, situated at the distance k from its centre, we have

There is no difficulty in adding other examples.

213. Creneral Expression for Products of Inertia.

—We shall conclude this Chapter with a short discussion of

the general case of the moments and products of inertia, for

any body, or system.

Let us suppose the system referred to three rectangular

planes, and let p, q, r represent the respective distances of

any element dm from the three planes

« cos a + y cos/3 + s cos 7 = o,

X cos a + y cos |3' + s cos y = o,

ai cos a" + y cos j3" + 2 cos 7" = o.

Then

Sfij'£?»w=S (ascosa+ycosjS+zcosy) (aJCOso'+ycos/S'+zcosy')*^

= cosacoso'2ar'cfm + cos|3cosj3'S2''*^''* + cos7 00S7'Sz'rfOT

+ (cos a cos |3' + cos |3 cos a) "Sixydm

+ (cos 7 cos a + cos a cos 7') ^zxdm

+ (cos /3 cos 7' + cos 7 cos /3') ^yzdm

;

and we get similar expressions for ^prdm and 'S.qrdm.
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Now, suppose that we take

^x'dm = a, '^y^dm = 5, "^^dm = c,

"Lt/zdm^f, "Sixzdm = g, "Sixydm = A

;

then the preceding equation may be written

^pqdm = cos a {a cos a + h cos fi' + g cos 7')

+ cos /3 (A cos a' + 6 cos |3' +/ cos 7')

+ cos 7 {g cos a'+/ cos |3' + c cos 7') ; {22)

along with similar expressions for ^rpdm and 'Sqrdm.

214. Principal Axes.—Next, let us suppose that the

planes are so assumed as to satisfy the equations

^pqdm = o, 'Srpdm = o, ^qrdm = o

;

then it is easily seen* that these planes are a system of con-

jugate diametral planes in the ellipsoid represented by the

equation

aX^ + bY^ + cZ' + 2fYZ + zg!^ + zhXY = const. (23)

Hence it follows that at any point there exists one system of

rectangular planes for which the corresponding products of

inertia, for any body, vanish : viz., the principal planes of the

preceding ellipsoid.f

These three planes are called the principal planes of the

body relative to the point, and the right lines in which they

intersect are called the principal axes for the point.

Again, every two solids have for every point at least one

common system of planes for which "Sipqdm = o, ^rpdm = o,

'Sqrdm = o, ^p'q'dm' = 0, 'Sr'p'dm' = o, ^q'r'dm' = o;

where the unaccented letters refer to the elements of one

solid, and the accented to those of the other.

This is obvious from the property that every two con-

centric ellipsoids have one common system of diametral planes.

*. Salmon's Geometry of Three Dimensions, Art. 72.

+ The exceptional cases when the eUipBoid is of revolution, or is a sphere,

will be considered suhsequently.

[20 a]
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Again, if two solids have for any point more than one
system of planes for which the foregoing six products of

inertia vanish, they must have the same principal planes at

the point. This follows since the two ellipsoids in that case

must be similar and coaxal.

215. Principal moments of Inertia.—Let us now
suppose the co-ordinate planes to be the principal planes of

the body for the orig^, then the moment of inertia relative

to the plane

a; cos a + y ops /3 + z cos 7 = o
is

'S.p^dm = S (» cos o + y cos /3 + z cos yYdm
= oos^ a'S.a?dm + oos'/3 ^y^dm + cos'y 'Si^dm, (24)

since in this case we have

^xydm = o, ^zxdm - o, "Zyzdm - o.

Again, let I be the moment of inertia of the body relative

to the line through the origin whose direction angles are

"> i3> 7 ; then we have

I + ^p''dm = 'Sr'dm = 'Si{x' + y' + z') dm
;

.'. / = cos" o S (y' + s') dm + cos" j3 S (z" + a^) dm

+ cos"7S(a^ + ^")cfm;

or 1= A cos' a + B cos'jS + C cos''7, (25)

where A, B, C are the moments of inertia of the body
relative to its three principal axes.

A, B, Care called the three principal moments of inertia

of the body relative to the origin.

If the centre of gravity be taken as the origin, the

corresponding values of A, B, C are called the principal

moments of inertia of the body.

We suppose, in general, that A is the greatest, and the

least of the three principal moments.
It follows from (25) that the moment of inertia of a body

relative to any line passing through a given point is known,

whenever the angles which the line makes with the principal

axes are known, as also the moments of inertia relative to

these axes.
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2 1 6. Ellipsoid of Cryration.—Suppose, as before, the

solid referred to its three principal axes at any point, and let

a, b, c be the corresponding radii of gyration, i.e. let

A = Ma\ B = Mb\ C = Mc\

and I = M¥; then equation (25) becomes

F = a" cos' a + 6' cos'jS + c'cos^'y. (26)

Now, if we suppose an ellipsoid described having the

principal axes for the directions, and a, b, c for the lengths

of its corresponding semi-axes ; then (26) shows that the

radius of gyration of the body, relative to the perpendicular

from the origin on any tangent plane to this ellipsoid, is

equal in length to this perpendicular. (Salmon's Geometry

of Three Dimensions, Art. 89.)

The foregoing ellipsoid is called the ellipsoid of gyration

relative to the point. It should, however, be observed that

by the ellipsoid of gyration of a body is meant the ellipsoid

in the particular case where the origin is at the centre of

gravity of the body.

217. Momental Ellipsoid.—If X, Y, Z be the co-

ordinates of a point H taken on the right line through the

origin 0, whose direction angles are a, /3, y, we have

X=ORcQ%a, Y=OE co&fi, Z=OB cosy.

Substituting the values of cos «, cos j3, cos y, deduced
from these equations, in (25), it becomes

1 . 0B? = AX^ + BT' + CZ\

Suppose, now, that the point R lies on the ellipsoid

AX^ + BY'' + CZ^ = const., (27)

and we get I . OR' = X, denoting the constant by X

;

OR''
(28)

Hence the moment of inertia relative to any axis, drawn
through the origin, varies inversely as the square of the cor-
responding diameter of the ellipsoid {2"])

.
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From this property the ellipsoid is called the momenta!

ellipsoid at the point.

When the origin is taken at the centre of gravity of the

body, this ellipsoid is called the central ellipsoid of the body.

If two of the principal moments of inertia relative to any
point be equal, the momental ellipsoid becomes one of re-

volution, and in this case all diameters perpendicular to its

axis of revolution are principal axes relative to the point.

If the three principal moments at any point be equal, the

ellipsoid becomes a sphere, and the moments of inertia for all

axes drawn through the point are equal. Every such axis is

a principal axis at the point.

For example, it is plain that the three principal moments
for the centre of a cube are equal, and, consequently, its

moments of inertia for all axes, through its centre, are equal.

218. £quinioinental Cone.—Again, since

cos'a + cos'/B + cos'7 = I,

equation (25) may be written in the form

{A - I) cos'a +(-»-/) cos»/3 + (C- I) cos'y = o

;

hence the equation

{A - I) X^ + [B -I)Y'+{0-I)Z' = o (29)

represents a cone such that the moment of inertia is the same

for each of its edges. Such a cone is called an equimomental

cone of the body.

Again, the three axes of any equimomental cone, for any

solid, are the principal axes of the solid relative to the vertex

of the cone.

When 1= B, the cone breaks up into two planes; viz.,

the cyclic sections of the momental ellipsoid.

For a more complete discussion of the general theory of

moments of inertia and principal axes, the student is referred

to Eouth's Rigid Dynamics, chapters i. and 11. ; as also to

Professor Townsend's papers in the Camb. and Bub. Math.

Journal, 1846, 1847.
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Examples.

Find the expressions for tie moments of inertia in the following, the hodies

being supposed homogeneous in all cases :

—

1. A parallelogram, of sides a, *, and angle 8, with respect to its sides.

M M
Ana. — i' sin' fl, — a? sin' 8.

3 3

2. A rod, of length a, with respect to an axis perpendicular to the rod and

at a distance d from its middle point.

Jns. M(- + dA.

J. An equilateral triangle, of side a, relative to a line in its plane at the

distance rf from its centre of gravity.

Ani. JSff'^ + dA.

4. A right-angled triangle, of hypothenuse c, relative to a perpendicular to

Its plane passing through the right angle.

Ans. M—.

5. A hollow circular cylinder, relative to its axis.

f2 ^ y'S

Ans. M , where r and r' are the radii of the hounding circles.
2

6. A truncated cone with reference to its axis.

Ans. -— TT ;;, where i and b' are the radii of its bases.
10 42 - 4 '

7. A right cone with respect to an axis drawn through its vertex perpen-

dicular to its axis.

iM I S'\
Ans. -—

I A'' H— I , where h denotes the altitude of the cone,

5 \ 4/
and h the radius of its base.

8. An ellipsoid with respect to a diameter making angles a, ;8, 7 with its

axes.

Ans. — (a'sin'o + i'sin'jS + c'sin'7)

.

g. Area hounded by two rectangles having a common centre, and whose
sides are respectively parallel, with respect to an axis through their centre

perpendicular to the plane.

Ans. —-
, ,,,

• .

12 ab — a b
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10. A square, of side a, relatiYe to any line in its plane, passing through its

centre.

Ans. M—.
12

11. A regular polygon, or prism, with respect to its axis.

Ans. ~[lt^i-2rA, where Jt and r are the radii of the

circles cireumsciibed, and inscribed to the polygon.

12. Prove that a parallelogram and its maximum inscribed ellipse hare the

same principal axes at their common centre of figure.

13. Prove that the moments and products of inertia of any triangular

M
lamina, of mass M, are the same as for three masses, each — , placed at the

3 "
•

three vertices of the triangle, combined with a mass -M placed at its centre of

4
gravity.

14. Prove that the moments and products of inertia of any tetrahedron are

M
the same as for four masses, each—

,
placed at the vertices of the tetrahedron,

4
^°

combined with a mass -M placed at its centre of gravity.

15. If a system of equimomental axes, for any solid, all lie in a principal

plane passing through its centre of gravity, prove that they envelop a conic,

having that point for centre, and the principal axes in the plane for axes.

1 6. Prove also that the ellipses obtained by varying the magnitude of the

moment of inertia form a confocal system.

17. Prove that the sum of the moments of inertia of a body relative to any

three rectangular aixes drawn through the same point is constant.

18. Prove that a principal axis belonging to the centre of gravity of a body

ia also a principal axis with respect to every point on its length.

19. Prove that the envelope of a plane for which the moment of inertia of

a body is constant is an ellipsoid, confocal with the ellipsoid of gyration of the

body.

20. If a system of equimomental planes pass through a point, prove that

they envelop a cone of the second degree.

2 1

.

For different values of the constant moment the several enveloped cones

are confocal ?

22. The common axes of this system of cones are the three principal axes of

the body for the point ?

23. The three principal axes at any point are the normals to the three sur-

faces confocal to the ellipsoid of gyration, which pass through the point.

(M. Binet, Jour, de I'Ec. Tob/. 18 13.)
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CHAPTEE XT.

MULTIPLE INTEGRALS.

219. Double Integration.—In the preceding Chapters we
have considered several cases of double and triple integra-

tion in the determination of volumes and other problems
connected with surfaces. We now proceed to a short treat-

ment of the general problem of Multiple Integration, com-
mencing with double integrals.

The general form of a double integral may be written

r.y C7

f{x,y)dxdy,

in which we suppose the integration first taken with respect

to y, regarding a; as constant. In this case, Y, y^, the limits

of y, are, in general, functions of x ; and the limits of x are

constants.

For example, let us take the integral

U-
a (X

,1-1 4,m-i /x'-^y'"-^dxdy,

in which I is supposed greater than m.
a'

therefore l7= — \

«'-'-—-«'"«&;=
,,

It should be observed that in many cases the variables are

to be taken so as to include all values limited by a certain

•condition, which can be expressed by an inequality : for in-

stance, to find

U= gi-l ym-\ (Ixdy,

extended to aU positive values of x and y subject to the con-
dition X + y < h.
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Here the limits for y are o and h-x; and the subsequent
limits of X are o and h.

Hence U=
h-x

iff'^y'^-^dxdy

I

m x^^ {h - x)'"dx.

Let X = hu ; then

h P-

U= u^U\-uYdu =
h^<«r{i) r(m)

T{l + m + l)
' (0

by Art. 121.

220. Change of Order of Integration.—We have
seen (Art. 115) that when the limits of x and y are constants

we may change the order of integration, the limits remaining
unaltered. But when the limits of y are functions of x, u
the order of integration be changed, it is necessary to find

the new limits for x as functions of y. This is usually best

obtained from geometrical considerations.

For example, in the integral

U- f{x, y) dxdy,

the limits for y are given by the right line y = x and the

hyperbola xy = a^; and the integral

extends to all points in the space

bounded by the axis of y, the hy-

perbola AL, and the right line OA,
where A is the vertex of the hyper-

bola. Draw AB perpendicular to

the axis of y. Now when the order

of integration is changed, we sup-

pose the lines which divide the area

into strips taken parallel to the axis

of X instead of that of y. Thus the

integral breaks up into two parts—one corresponding to
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the triangle OAB, the other to the remaining area : hence

/(«> y) Ay^oi + f{p, y)
a Jo

dydx.

As another example, let us interchange the variahles in

the integral

XI-

a rlx-

Vdxdy.
II Jmz

Here, let 00 and OD be the

lines represented by y = & and
y -mx; and let OA = a.

Then the integral is extended to

all points within the triangle OGB.
Accordingly,changing the order, o'

we get

U= Vdydx + Vdy
Jy

dx.

A X

Examples.

(. find the value of the double integral

Jo J "^•J[a - x)[x-y)

Here, changing the order, the integral Tbeoomes

f{y)dydx

J J » V(a - X)

But
dx

•^{a - x)(x - p)

V(a -x){x-

= IT ; hence U=it {/{«) -/(o) }

.

2. Prove that

rill
('° Niax-i' ra ra*\/it'-y'

I f{x, y)dxdy=\ f{x, y) dyd:
Jo ia-\la^-v*^a-ya^-y*



316 Multiple Integrals.

3- Hence find the value of

•'ft •'n

Ans. ira" {</)(«) — ^(o)}.

4. Change the order of integration in the double integral

/'2a r^/iax

"<[ Vdxdy.
V'2oz-xa

The limits of y are represented by the circle x^ + y"^ != 2ax, and the parabola

j/^ = 2ax; and we readily find that

Vdydx + Vdydx + Vdydx.
Jv' Jo Jo + v/o'i-ya J. Jl/"

221. nirichlet's Theorem.— The result given in

equation (i) has been generalized by Dirichlet (Liouville's

Journal, 1839), and extended to a large class of multiple

integrals, as follows

:

Commencing with three variables, let us consider the in-

tegral

TJ= Jr-\. flym-1 z'^^dxdyds,

in which the variables are supposed always positive, and
limited by the condition

X + y + z < I.

In this case the limits of s are o and i - x — y, those of

y are o and i - x; and those of x are o and i.

Hence U= rI Jo
\-x-^

x'-^y'^-^z'^'^dxdydz.

It is easily seen, from (1) , that

n-xri^-y T {m) T ifl)
y»!-i z«-^clydz = (i - x]'"^ ,

'—5l_L..

Jo Jo
^ ' T(m+n+i)
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Therefore

r{m + n+ i) \„ ^

^ r{m)r(n) r{l)r{m + n + i) _ r{i)r{m) r{n)

r(w + »+i)' r{l + m + n+i) r{l+m + n+ i)'
^

Again, in the same multiple integral, if x, y, s, heing stilf

always positive, are subject to the condition

X + y + z < h,

we get

r{l+m + n+iy ^^^

This readily appears by substituting x = hx', y = hy',

z = hz', in the multiple integral.

There is no difficulty in extending these results to any
number of variables. For we readily proceed from (3) to the
case of four variables ; and so by induction to any number.

Thus, the value of the multiple integral

U = jjj ... x'-' y»-' z"-' ...dxdydz...,

extended to aU positive values of x, y, z, &c., subject to the
condition

X + y + z + &o.< I,

is

^, T{l)T{m)V{n)...

r{i + 1+ m+ n+ ...)' ^^-^

Again, in the integral

^ = lU «^' y""^ 2""' dx dy dz,

suppose the variables to be still always positive, but limited
by the condition

M Ĥ)-^
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then making

3'=^'
(fT=^' yrc}'"'

the integral transforms into

pqr JJ

where u + v + w < i

Accordingly,

ff i.i S.I 1.1 , ,

mp vi vf dudvaw,

(5)pqr

Again, from (3), the value of the triple integral

\\\ '^^ y™"' 2""* dxdydz,

extended to all positive values, subject to the condition

X + y + z> u and <u + du,

is immediately found by differentiation to be

ni)T[m)T{n) ^, ^^
mT[m)T[n)

^,„,^,^^_
V{i+l + m + n)^

' T{l + m + n)

Hence the multiple integral

III Fix + y + z) «t^ y^^ z» ' dxdydz,

taken between the same limits, has for its value

Til) Tim) T{n) „, , ^..^ , ,
^ ', '—\— Fiu) M^""*-" du.
Til+m + n) ^

'
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Accordingly, the value of the multiple integral

Jll F{x + y + z) x^'^ y"'-^ z"-^ dxdyd%,

extended to all positive values of the variables, subject to the

condition

x + y + z<h,

IS
r(0 r (m) r(«) <*

Til

^^""^^1"^ (* Fiu) m'^"*^-' du. (6)
+ >W + m) Jo

In like manner it is seen that if the multiple integral

U= [[[f [ f-Y+ frY+ f-TI 0^-' y'^^ s"-' (?a^cf«/^2

be extended to all positive values, subject to the condition

x\» (y\i (z\

we have

U
a'h'^o'' \p

+ V +

n^lrl^ r^'*

pqr

\^ ^
?
^ »•/

F{u) uf'i •"
du.

(7)

These results can be readily extended to any number of
variables.

Examples.

I. Find the value of

II x\-^ iir^ e^ dxch),

extended to all positive values, subject \ax-Vy <h.

Ans. -—- (e* - iV
RlTl l.ir ^ 'sinh
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2. More generally, prove that

JJ
F'{x + y) X'-' r''^''^^^ {F(^) - no)],

where x + t/< h.

3. Find the value of

SSS . . dxi dxi... ax„,

extended to all positive values of the variables, subject to the condition

»i= + «a* + . . . + X,? < iJ".

. /-a\" ^'
A',is, — 1 —,

4. Prove that

fflvf

dxdydz tA

-y'-z'

the integral being extended to all positive values of the variables for which the
expression is real.

5. Show in general that

I14.1

dx\ dxz dxz Tr
^

III '^I-Xl^-Xi'....-X„^
^„^m

under the same condition as in last.

22 2. Transformation of multiple Integrals.—We
now proceed to consider, in general, the transformation of a

multiple integral to a new system of independent variables.

Suppose it be required to transform the integral

to another system of variables, u,v,w; being given x, y, is in

terms of m, », w.

This transformation implies in general three parts

—

(i) the expression of f{x, y, z) in terms of u,v,w, (2) the

determination of the new system or systems of limits;

(3) the substitution for dxdydz.

The solution of the first two questions is a purely algebraical
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protlem. We here accordingly limit ourselves to the con-

sideration of the third question, and write the integral in the

form
id»\dylf{x.,y, %) ds.

In the integration with respect to z, x and y are regarded

as constant ; accordingly, in order to replace z by the new
variable lo, we suppose s expressed, by means of the given

equations, in terms of x, y, w; and then we replace dz by
d&
-r- dw. Again, to transform the integration from y to v, we
aw
suppose y expressed in terms of v, w, x, and then dy replaced

\ij -T- dv: we next suppose x replaced hj — du ; and we

finally replace

, , , 1 dz dy dx - ^ ^

ax dyds hj -—;

—

~ du dv dw.
aw dv du

It should be observed that in each of the latter transfor-

mations a change in the order of integration is supposed.

By this means the transformed expression is

, , dz dy dx ^ , ^

where (m, v, w) is the transformation oifix, y, z).

The preceding transformation would present, in general,

a problem of extreme difiiculty, especially in the investiga-

tion of the new limits at each change in the order of inte-

gration. The one consideration in every case to be carefully

observed is, that the transformed integral or integrals must
include every element which enters into the original expres-
sion, and no more.

Again, it may be observed that in the foregoing trans-
formation for dxdy dz the order of substitution may be inter-

changed in any manner.
Thus, if we commence by replacing x by u, we must

suppose X expressed in terms of w, y, z ; and then replace dx

by -r- du, and so on.
du

[21]
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As an illustration we shall consider the ordinary trans-

formation from rectangular to polar coordinates, viz. :

—

!!; = » sin sin ^, y = r sin cos 0, z = rcos0.

Here we have

therefore

hence

«' + «/' + z' = »•'

of = r - y -
:

dx r I

dr X sin sin ^'

. . dz . n ^V • n
Again, --^ = -r smO, -^ = - r sm U sm A

;

da a(j>

therefore -r- -^ -r- = r' sin ;

dr dd djt

and for the element of voliune dx dy dz we substitute

»•' sin dr d6 d<p,

a result which can be also readily shown from geometrical

considerations.

Next, let us consider the more general transformation

a!=r sin \/ 1 - m' sin'^, y=r6ln0\/i-w'sin'0, z=rcos0oos0,

in which »»' + »"= i.

Squaring, and adding the three equations, we get

a;' + y' + z' = r'.

In replacing x by r, we get, therefore,

dx r I

dr X sin 0^1 -ot' sin'
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Next, to replace y by (p, we must express y in terms of r,

<p, and g : thus

/ 7> • \ > >
«'2'

y = >• sm A -v/ Jw'' + rt cos = sm d hw r + „
,^ '^ ^\ cos^^

= tan ^ \/m^r^ cos"^ + «'s^

Hence

jw^r^sin'^
-77 = seo'0 ,/m' »•" cos" A + w" s' 7= „ .
(i<j>

^^ ^ ymVoos^^ + w^'s'

_ w'y' cos'^ + w'g' seo'^ _ r (ot' cos' + w' cos' 6) ^

•v/mV^o?^TwV cos v^ffi' + «' cos" 6
'

-—: = -r Bind cos d>.

dti
^and, finally,

Hence for dx dy dz we substitute

y' (ot" cos' j> + »' sin' (^) <?r </0 r?^

(9)
y^i - ot' sin'0 v^i - «' sin'0

In general [Biff. Calc, Arts. 338, 342), the product

dz dy dx

dw dv du

is the Jacobian of the original system of variables, x, y, s,

regarded as functions of the new system, u, v, w.

Accordingly, the general substitution for dx dy dz is

dx dx dx

du dv dw

dy dy dy

du dv dw

dz ds dz

du dv dw

du dv die. (10)

223. Transformatioii for Implicit Fanctions.—If,

instead of being given x, y, z explicitly as functions of «, v, w,

[21a]
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we are given equations of the form

Fi{x,j/,z, u,v,w) =o, F,.{^,y,z, u,v,w) = o, Fi{x,y,z, u,v,w) = o,

we have {Biff. Calc, Art. 341), adopting the usual notation

for Jaoobians,

d{F, F^, F^)

d{r, y, z) d (u, v, w)

d[u,v,w)'" d{F„Fi.Fz)
'

d{x,y,z)

And for dx dy dz we must then suhstitute

-Ydudvdiv, (n)

where J', is the Jacohian of the given system of equations

with respect to the new variables, and J2 their Jacohian with

respect to the original system.

224. Transformatioa of Element of a Surface.—
If the equation of a surface be referred to a system of rect-

angular axes it is easily seen, from Art. 1 89, that the element

of its superficial area, whose projection on the plane of xy is

dx dy, is equal to

Accordingly the area of a surface may be represented by

J'-^dJHIJ'^^'^^' ('^)

taken between proper limits. In this result s is regarded as

a function of x and y by means of the equation of the

surface.

To transform this expression to new variables u, v, we,

by the preceding Aiiicle, substitute

dx dy dy dx\ , , . , , . , ,-—; ;

—

r]"i*<*v instead of dx dy.
du dv da do/
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Also

therefore

dz

du''
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where Ji and J^ are respectively the Jaeohians of the system
of equations with respect to the new, and to the original

system of variables (compare Diff. Gale, Art. 341).

Examples.

1. Transform the multiple integral

\lll Vdxdydzdw
ly the substitution

a=roos6cos0, y = r cos 9 sin 1^, z = >• sin 9 cos ^, w = »• sin 9 sin 1)/.

The transformed expression is

Ki Tic^ sin 9 cos edrdedijid^,

where Vi is the new value of V.

, „ «2 «3 M3 «1 «1 «2
2. It Xl = , «3 = , Xi = -,

«1 Mj Mj

prove that JJJ" Vdxi dx% dxa transforms into 4 JJJ Vi dui dU2 dut.

226. We shall next prove that

'fdu dv dw". , , ,

Tx^di'^lTz^^'"^^'^^^U*0 lAitJ Uffi

{u cos A + » cos /i + tc cos v) dS,

where the integrations, respectively, extend over a closed

surface 8, and through the volume contained by the surface

:

X, ju, V being the direction angles of the outward drawn
normal at dS, and u, v, to being functions of x, y, z, which
are supposed finite and continuous for all points within S.

Here, since j8 is a closed surface, any intersecting right

line meets it in an even number of points ; consequently

' du
-7- dx du dz
dx

dydz'Si {Ui - Ml),

where Mi and Mj represent the values u for two corresponding

points of intersection with S, made by an indefinitely thin
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parallelepiped standing on dy d% ; and S denotes the summa-
tion extended to all such points of intersection. Now, as in

Art. 192, let dS^, dSi, dS^, &o., represent the corresponding

elementary portions of the surface ; and Ai, Xj, A3, &o., the

angles that the exterior normals make with the positive direc-

tion of the axis oi x; we shall have

dydz=- cos Ai dSi = cos A2 dSa = - cos A3 dS, = cos Ai dSi = &o.

Accordingly,

dx
dx dy dz ucosXdS,

under the same restrictions as to limits as before,

follows immediately that

(15)

Hence it

\\\

du do dw\ , , ,
^- + -p + ^- dxdydz =
dx dy dzj

{uoos\-i-voosfi+woosv)dS. (16)

This result obviously holds good when the triple integral

is extended through any space which is bounded externally

by one closed surface and internally by another, provided
the double integral is extended over both the bounding sur-

faces.

Again, if for u we substitute u V, for v, v V, and for w,

tv V, we get immediately

IV
+

m/ dv dv dv\_, ^ ^

W-d^^'di^"^}'^''^^'^'

V{u eoa\ + V cos fj. + to cos v) dS - Hi dx dw

dy de

(17)
under the same restrictions as above.

227. Oreen's Theorem.—We shall now give a brief
notice of the very remarkable theorem given first by Green
("Essay on the application of Mathematics to Electricity and
Magnetism," Nottingham, 1828, reprinted, 1871), as fol-

lows :

—

If Z7and Fbe functions of x, y, z, the rectangular coordi-
nates of a point ; then, provided U and V are finite and con-
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tinuousfor all points within a given closed surface S, we have

fdUdV dUdV
.
dUdr\

dx dx dy

'

d^U d^U d^U\_, ^ ^
+ -jY )

^^ ">!/ ^^

where the triple integrals are extended to all points within

the surface S, and the doutle integrals to all points on S
;

and dn is the element of the normal to the surface at dS,

measured outwards.

Hr ^(n^I\=^JL^^ TJ^Z
' dx\dx)dx dx dx^

'

we have

-;-
( U -r- 1 dx dy dz

dx\ dx J I
dUdV,

_, _,——r- »* "y "2
dx dx

U-r-r dx dy d&,
dxr

the integrals heing extended to all points within 8.

Again, by (15), we have

dx
U -;— ] dx dy dz =

dx J
U -r- ooa\ dS,

dx

under the same restrictions as to limits as before.

Hence

[dUdV_

dx dx
dxdydz TJ-r- COS XdS

dx -w
TJ—rr dx dy dz,

dx-

along with corresponding equations for y and z.
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Accordingly,

-l\

[fdUdV dUdV dU dV\
, , ,

-; T- + —, r- + —, 7- dx ay dz
\dx dm dy dy ds dz j

[„(dr . dV dV \,„
IJ\ -r- cos A + -r- cos u + -7- cos v do

\djs dy dz J

^fd'V d'V d'V\^ , -

Again, we obviously have

dx dy ds
cosA = -T-, cosu = -—

,

cos V = -7-

;

dii dii dn

'

,, , dV . dV dV dV
therefore -r- cos A + ^— cos u + -— cos 1/ = -7-

.

dx dy dz dn

Hence

nfdUdV dUdV dU dV\ ^ ^ ^
1 1

——r- + — + -r- -J— 1 dx dy dz
\dx dx dy dy ds dz

u'-^dS-
dn

v'^ds-
dn

U d'V d'V d^V
dx' ^w''i^)'^"^y^')-

('S)

^^(d'U d'U d'U\^ ^ ^

The latter expression is obtained by the interchange of J/" and
V in the preceding.

If Cr=F, weget

(V?J+(?J^(?''J^'^^'^'

J-S--1J \ dx' dy" da
dxdydz. (19)
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If, as in Biff. Calc, Art. 332, we denote

dW d'V d'V . .^
dx"

then equation (18) may be written in the following abridged

form :

—

u'J:-vf\ds^
dn dn

{Uv'V- Vv'U)dxdi/dz. (20)

228. Case where Z7 becomes Infinite.—We shall now
determine the modification to be made when one of the func-

tions, U for example, becomes infinite within S. Suppose
this to take place at one point P only : moreover, infinitely

near this point let V" be sensibly equal to - where r is the dis-

tance from P. If we suppose an indefinitely small sphere, of

radius a, described with its centre at P, it is clear that (18) is

applicable to all points exterior to the sphere ; also, as

'd' d^ d^

dx' dy^ dz'

U— dS, due to the sur-

it is evident that the triple integrals may be supposed to ex-

tend through the entire enclosed space, since the part arising

from points within the sphere is a small quantity of the same

order as a". Moreover, the part of

face ofthe sphere, is indefinitely small of the order of the radius

a. It only remains to consider the part of V— dS due to the

spherical surface. Here, as V is supposed to vary conti-

nuously, we may take for its value that
{ V) at the point P :

also

dJJ

dn

dU
dr dr

I

T riTT

consequently the value of V— d8, over the sphere,

-4tF'.

IS
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Thus (20) becomes in this case

331

w
u'-Tds-

j.^-d'V d'V d'V\, , ,

vfds-
dn

(21)

where, as before, the integrals extend through the whole
volume and over the whole exterior surface.

The same method will evidently apply however great

may be the number of points, such as P, at which either Z7

or V becomes infinite.

229. Integration through Kxternal Space.-^Let us
next suppose a surface Si drawn inclosing another surface /Si,

and let Green's theorem be applied to the space between
these surfaces, we get

dUdV dUdV dUdV\^^^
^^

dx dx dy dy dz dz j

U -7- dSi - u'^J-ds.- U^^Vdxdyds.

Let us now suppose 82 to be a sphere of indefinitely great

radius ; then, provided the double integral

U ——dSi
an

become evanescent, Green's equation can be applied to in-

tegration through the infinite space outside Si, as well as

through the finite space within it.

Moreover, since in this case

w
U -y- dSi =

dn
U ^r" sin 6 d9 dA,

dn ^

we see that the double integral vanishes whenever r' U
becomes evanescent when r is indefinitely increased; i. e. when-

dV
dn
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ever UV is of lower degree than - i in the coordinates ; a

property which holds good in all physical applications of

Green's theorem.

230. Application to Spherical Harmonics.—We
shall conclude by establishing a few fundamental properties

of spherical harmonic functions.

In Green's theorem let U = Vi, V = Vm, where Vi is a

solid harmonic (Diff'. Calc, Art. 333) of the degree /, and Vm
another of the degree m. Now suppose a sphere of radius a,

taken as the bounding surface 8, then equation (21) becomes

Next, let Vi = r^ Yi, Vm = r'^T^, so that Yi and F,„ are

surface harmonics {Diff'. Calc. Art. 334) ; then

-'"-• Ym.
dVi dVi jj.^^ ,dVm
~r- = -r- = Ir Yi, and —;— = mr''
an dr dn

Hence, since r = a over the surface 8, equation (22) be-

comes

ma'hm-\

or

FiF„c?S=fe'+™-'

Q-m)

YmYid8,

YiY,nd8 = o.

Accordingly, so long as I and m are unequal, we have

YiYmdS^o, (23)

where the integration is extended to all points on the surface

of the sphere.

This may be written

YiY,„dfid^ = o, (24)
Jo J-1

adopting the usual notation {BiJ^. Calc., Art. 336).
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If we EulDstitute Pi and Pm for Ti and Ym, we get, so long

as I and m are unequal,

or

j
j

PiP,„dfid^ = o,

rPiP„d^^o, (25)

since Pi and Pm are functions of fi only.

Again, we have

pTT r+i

YiLmdnd^ = o, (26)

where i™ is Laplace's coefiaoient of the »»'* order {Biff. Calc,

Art. 337).

231. We can now find the value of

TmLmdud^.

For, let P be the point x, y, s, and P' the point x', y, z
,

then, since ^p> satisfies the equation vM -pw) = o, we have

from (21), assuming ;8 to be a sphere of radius r,

I d

PP?irm-Vml[-^)]ds
= 4.rw (27)

in which we suppose P' situated inside the sphere S.

Again {Biff: Calc, Art. 337),

I I "='=°Z„/"
= - + Spjy «=i rn+i '

(28)

hence
dr\PF)~ r' "=i r"'' '

also, since Vm = »''"i^m, 'we have

dV,

dr
= /wr*"-' F™
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Sutstituting in (27), and observing from (26) that

Ym Ln dfl (

except when w = m, we get

= o

{2m + 1) ^m -^ m.„,^„-^clS=4Trr''"Y'^,

or
21T- I'+l

Lm T,„ dfi I

J-i

47r

2OT + I

Y' (29)

where Y'm is the value that Ym assumes at the point P',

i. e. when fi ^ fi, = <p'.

232. Next, let r„C) = (/i' - i)«" (j-)' P„ (30)

in accordance with the usual notation; then {Biff. Calc,

Art. 336) the general value of the spherical harmonic Ym
may he written

Fm = ^0Pm + 2(^, cos s^ + B, sin s^) TJ'). {3 1

)

If now we suhstitute Pm for Ym in (29), it hecomes

Jo J-i 2OT+ I
(32)

Again, if we suhstitute cos s^T,„W for Fm, we get from

(29),

r f ' cos s,p Lm Trnf-'^ dfi d^ ^^^ cos sd,' T'm^'\ (33)
Jo J-i

'^ ^ 2m+ I

where T'„W denotes the value of Tm^''' when we suhstitute ju'

instead of ju.

Also, since Lm is a spherical harmonic, we may write

i„ = fl(, P„ + S (a, cos s^ + h, sin s^) ?„W, (34)

in which the coefficients a^, ... a„ b,, ... are for the present

undetermiaed.
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If this value of Lm be substituted in (32), we readily get

fflo

47r
iP^Ydfidi> =—^p',zm + I

since all the other definite integrals vanish identically.

Hence, since ao = -P'm {DiS Calc, p. 428),

[PmYdix =

Consequently, as Pm =

zm + I

I Id

(35)

(iu'-i)",

we

2"* \m \diij

Again, if we substitute for L^. in (33), we get in like

manner

a, (cos s^ TJ')y dfi d<j, =—=: cos s^' T'^W.
Jo J-1 2.m + I

Hence

[TJ^^fdn- zm + I

233. In order to determine

coss^'r^W. (37)

P(r,„w)'^/«.

and consequently as, we shall commence hy proving the fol-

lowing theorem in the Differential Calculus, viz.,

{x - af {x - b)" D'^"
{
[x - a)'" {x - b)'"]

\m+n
I)'"-"{{x-a)'^{x-b)"'}, (38)

in which m and n are integers, and m>n', also D represents
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Here, by Leibnitz' Theorem {Biff. Calc, Art. 48), the
general term in the development of

D™^ [{x - a)'" {x - b)"']

is of the form

im + n)im + n-i) . . .[m + n-r+ 1) ^ ^ , . ^ , „V LS ' ^ L J)mH,-r^^ _ ^)m_ J)r^j. _ ^m.

Moreover, as this is evanescent so long as r is less than n,

we can assume r = n + p, and the preceding may be written

\m+ n
D*"-^ (a; - a)"" . I)'"'p{x - 5)*",

\n + p \m —p

\m+n \m \m
or, ;

—

~
f— -i

!=^= (x-ay(x-b)'»-"-P.
\n + p \m- p \p \m-n -p ^ ' ^ '

Accordingly, the expression

{w-aY{x- J)» i)"^"
(
{x - aY {x - b)"'

}

p=m-n \m+n \m \m
= S

i

!=== \=
I

—!== {x-aY*P{x-b)'^. (39)
^"=0 \n +p \ni-p \p \m-n- p ' ^ ' * '

Again, the general term in

D-^ {(»-«)•»(» -6)")

may be written

\m-n

\p \m-n-

p

\m-n \in \m

D^i-n-P (a, _ «)«• . 2)P(a; - J)»

- (x-a)'^{x-b) m~p

\p\m-n — pUi + p \m - p

Comparing this with (39), the theorem in (37) follows im-
mediately.
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Again, if we substitute fi for x, s for n, and make J = i,

« = - I, this result can he written in Rodrigues' form, viz.,

\m + s

{n" - i)» D™" (ft" - if = ^^= Z)"-' (u' - i)". (40)

Hence, since

we get ^

T W = L^ + ^ (m'-i)''.Z)'»-V/x'-i)'»

Iff* - s 2"\m^

Consequently, multiplying the two expressions,

\m, + s 1

\m - s (2'"\my >--
'

y-
/

Therefore,

Again, integrating by parts, and observing that the term
outside the sign of integration vanishes for either limit,

we get

hence, by successive integration by parts, we get finally

r B'^^'ifi' - iYB"'-'[f^ - lYdn

"
[22]
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Consequently

\m -i- s

Hence, &om (36),

\m -^ s I

^ '
\

m~s J,/ ' '^ ^ '

\

m- s 2OT+I

(41)

2 1 JW - s
ffl, = (- i)' L COS s^' r„'W

;

(42)

Lm + s

and the complete expression for Lm can te immediately
written down. (Compare Biff. Caic, p. 428.)

234. Expansion of a Function in Spherical Har-
monics.—We next proceed to prove that any function

f{fi, f), which is finite and continuous, can be expanded
in a series of spherical harmonics, i. e. that

/(;«, 0) = ro + Fi+ Fa + .. . + F„ + &c. (43)

For if we assume this result, multiply both sides of the
equation by Ln, and integrate, we get, from (26),

r2ir r+l (•2ir r+1

.f{iH,^)Lndixdi^=\ Y„Lndfid^
Jo J-i Jo J-1

= Fn, from (27),2«+ I ' ^ '"

Again, writing ^', ^' for ;u, ^ in (43), we have

/( /, 0') = F„' + F/ + F/ + . . . + F„' + &c.

I «=oo r27r r+l

^ 4^ ^„=x
^''' "^

'Mo J -Z^"' *^ ^" ^^^ ^'^' ^4^)
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We shall verify this result by proving that /(/*', ^') is the

limit of the expression at the right hand side of (44) when

« is increased indefinitely.

Por, suppose h= — ; then since, by hypothesis, / is less

than r, equation (28) may be written

T = Lo + hLi + h^Li + ...+K'Ln + ..., (45)
[i-zhX + K'f

where

A = cos PCF = fill +yi - fi' '/i- fi'^ cos {<j>
- <p').

If we differentiate (45) with respect to h, and multiply by
zh, we get

— ^ ~
a = 2hLi + AhJ'Li + . , . + 2nh''Ln+ •

{l-2hX + h')i

Adding to (45), we have

I -A'
;T=Lo + 3hLi + 5K'Li + ...+(2n-i- i)A"i„+... (46)

(i -2h\

Hence

xl^°°^{2n+i)h"{f{fi,i>)LndS
{i-h')f(fi,^)d8

{i-2h\ + h^)i
, (47)

where the integrals are supposed to be extended over the
surface of a unit sphere, of which dS is an element.

Hence we infer that

n=Qo rr

is the limiting value- of

'(^^^^i^^when;^=i.

Again, when i - A is indefinitely small, the coefficient of

[22 a]
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every element in the latter integral is indefinitely small except

those for which (i - 2h\ + ¥)^, or

PP", is indefinitely small, i. e. for — ^P
which the point P is taken in-

definitely near to the point A on
the sphere. Consequently the

integral has ultimately the same
value as if it were only taken
over a very small portion of the

surface around the point A ; but
throughout this portion we may
assume/{/u, 0) =f{n', ^'), namely,
its value at the point A. Hence
the limiting value of

Fig- S3-

(i - 2h\ + h')^
/(i"',^')

J(i-

(i -h')d8

(i -2hX+h')i
when A = I.

Again, since X = cos ACP, we may write rfX d<j>i for dS,

where ^i is the angle the plane ACP makes with a fixed

plane drawn through CA, and we have

}](i-2hX + h')i~]o J-(i -;

"rrn

2k\ + h^)i

d\

{i-2hX + h')^

Accordingly, for all values of h,

(i - h') d8

4ir

Hi
.= 4T,

(i -2h\ + h'')^

when taken over the surface of a unit sphere ; and we con-

clude that

477
(2n + l)

JJ yO«, ^) Lndfid,l> =/(/, i,'), (48)

thus verifying equation (44).
This is the well-known general formula of Laplace ; from

which we infer that every fimte continuous function of n and ^
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can be expressed in a series of Spherical Harmonics. There

is no difficulty in showing that the series is unique : i. e. that a

given function can only be expanded in one way in a series

of Spherical Harmonies.

235. It may be observed that the determination of the

value in ^herical harmonics of a given function of 9 and ^
is usually best obtained by means of the corresponding solid

harmonic functions. We shall illustrate this by an example.

To transform «* = cos 6 sink's sin'^ cos <p.

Here r^u = xy^ ; and we readily see that we may suppose

M = Fa + Fi. (49)

This gives xy^ = r^V2+ Fi, (5°)

where F2 and Vi are solid harmonics.

Operating with v'' on both sides, we get

2xy= v'C'-'F!) = 2.7 F^;

hence Fa = }-«!y, and therefore Ti = \n-/i - ju' cos ^. Also

from (50),

.'. Ti = ft\/i -
fjL^ COS0 {(i -

ft') sin'0 -
-f).

... . , COS A - cos 30Agam, since cos 6 bid: 6 = -,

4
we readily get

Yi = —
(I-

-
fx^) cos - — ^--^ cos 30.

Hence cos sin" B sin' cos =^' ~ ^'
cos

7

H. f^yjLul (I
_ ^.) eos - ^iiHi^* cos 30.

It is readily seen that a function cannot be exhibited in a
finite series of spherical harmonics unless the corresponding
expression in x, y, s is rational, or becomes rational when
multiplied by r.
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Examples.

1. If Z7= s cos « + sin « cos » + c sin M sin v,

!2ir [2-iT f+l

I f [T7) amu du ch) = 2it \ f(Aw) aw,
Jo J-'

where A = Va* + i' + c'.

Let a = cos «, y = sin « cos v, 2 = sin « sin «;

;

then {x, y, £) are the coordinates of a point on a sphere of unit radius, with

centre at the origin.

Also let a =J.a, b = A$, c = Ay ; then a, ;3, 7 is also a point on the same

sphere, and

a cos « + i sin « cos » + c sin u sinv =A cos 8,

where fl is the arc joining the point o, 18, 7 to x, y, z. Again, the element of

the surface of the sphere at the latter point may he represented by sinM m in,

or hy sin 6 dB dtp, indifferently. Consequently,

/(«cos« + Jsin« cosv + csin« sin*) Bmududv=f{A cos 9) aiaBdSSip.

Integrating each of these oyer the entire surface, we get

f7rf27r C^^ t^ C^
f{Zr)amududv =

\
f{A cos 8) sin. e ded^ = 2Tr

\ f{A cos 6] smi di.

Jo Jo Jo Jo

2. Hence deduce the following

:

I I f {U) &ia.u 003 ududv = —^ \
'f{Aw)wduj,

Jo Jo ^ J-li

fir
czn ZtrO f"*^

I
/{ TT) sin'« cos vdudv= —j-

j
f[Av>) wdw.

These are deduced from (i) by differentiation under the sign of integration.

3. Show that the integral

P' = 11/ (if + y)
«'"^ y"'''^ ^x dy,

supposed extended to all positive values suhjeot to the condition a; + y < i, can

be reduced to a single definite integral, by the substitution

x = im, y = «(i —!').

Hence x + y= u, and dx dy becomes udv dv ; also the limits for u are o and h,

and those for v are o and i ; hence

T7=
\ \ /(«) m'*™-! «)"{* - v)<^-^du dv
Jo Jo

_T{I)V{m)[^
—H^ /(«) u'*«'-^d!t. (Compare Art. 221).
+ »«) Jor(l + m)
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4. Show that the foregoing process can be extended to the integral

V = ^lif{x + y + a) ic'-i y"--^ «"-' dxdy dz,

when the Taiiahles are always positive and subject to the condition

1C + y + I <a.

Substitute for x and y as in last ; then, regarding z as constant, the limits

for V are o and i, and those for « are o and a- z; hence

XI = £iillW f ° ["''flu + z) vf*">-^ z»-' dudz
T{l + m) Jo Jo

This process is readily extended to any number of variables.

5. Find the value of the definite integral

n ^i-i (i ™ i;)'"-'^dv

Jo (4(1 ~v) + avy*^'
By Art. 120 we have

f°° r°° ,, 1 I , , r(0 r(m)

Jo Jo ffl'J"*

Transform by the substitution x= uv^y = u{i — «) ; then, since the limits for»

are o and l, and those for u are o and oc
, we get

Jo Jo

fl

*•»

oJo

therefore
1 v-i(r -t.)w-i<fo r(?) r()M)

Jo U»(i -*) + <

6. Prove that

I 1 F{ax + ty, a'x+h'y)dxdy=j\
\

F(x,y)dxdy,
j-00 j-00 A J-00 J-00

where A =
a' V
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7. Prove that
IF W
["zf' {trfl cos'e+n' CDs' (fidOd^ _w
Jo Jo V{i - »»2sin2fl)(i -w^Bin^^) ~ 2'

when «!' + «'= I.

This is an immediate consequence of {9), Ait. 222.

8. Show that Legendre's Theorem connecting complete elliptic integrals

with complementary moduli follows immediately from the preceding exan.ple.

^«* -^W^JoVn^^^' ^W-J„v''-'»'«i^^<"'''.

then the equation in Ex. 7 is immediately transformed into

F(m) E[n) + E{m) T[n) - F{n) F{m)=-.

9. Prove that the area of a surface iu polar coordinates is represented by

|y,i,»fl(,. + g) + ^,,9#.

taken between suitable limits.

10. Find the value of

fan-Lndp. Am. 27rP„P'n.

1 1

.

Adopting the notation of Art. 232, prove the relation

where « = /»'— i

.

Here D (m'*' i)'Pm B'*' Pm) = «•*' (-0'*' Pm)»

+ «»Z)»P„ («2J't« P„ + 2/» (s + I) i)»*i Pffl).

Also, Art. 335, Diff- Cafe, since Pm satisfies the equation

D (uDFm) = m (m + I) P„,

we have D'*^ (« SFm) = m{m+ i)S'F„,;

hence kD'*" Pm + 2/1 (« + i) D'*' P„ = (m -*)(»» + « + 1) -D' Pm.

The result in question follows immediately.
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12. Hence determine the value of the definite integral

Multiplying the result in Ex. u by d/i, and integrating between the limits

+ I and — I, we get

Hence, substituting s - i for »,

{* (n.wprf/4 = -()»+«)(«+ 1 -sjp (T„i.-^)f d,,.

= {m + s){m + 8-i){m+ I -s)[m- s) [Tm^'-^f d/i

But when s = 0, rm'') becomes Pm ; hence, by equation (35), Art. 232,

{TJ.')fdpL = (- l)« t=
J-i

'
^ ' 2m,+ l\m.-i

Compare Art. 233.

13. Express cos'fl sin'9 Bini#> cosi|) in Surface Harmonics.
Proceeding as in Art. 235, we easily get

cos' S sin' S sin ^ aoi<p = -}-{{i - ij?) sin z^

+ i(i-/''-)C"^-^)sin20.
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CHAPTEE XII.

ON MEAN VALUE AND PROBABILITY.

236. A VERY remarkable application of the Integral Calculus

is that to the solution of questions on Mean or Average
Values and Probability. In this Chapter we will consider a

few of the less difficult questions on these subjects, which
will serve to give at least some idea of the methods em-
ployed. We will suppose the student to be already ac-

quainted with the general fundamental principles of the

theory of Probability.

Mean Values.

237. By the Mean Value of n quantities is meant their

arithmetical mean, i.e. the rf^ part of their sum.
To estimate the mean value of a continuously varying

magnitude, we take a series of n of its values, at very close

intervals, n being a large number, and find the mean of these

values. The larger n is taken, and consequently the smaller

the intervals, the nearer is this to the required mean value.

This mean value, however, depends on the law accord-

ing to which we suppose the n representative values to be

selected, and will be different for different suppositions.

Thus, for instance, if a body fall from rest till it attains the

velocity v, and it be asked—What is its mean velocity

during the fall ? If we take the mean of the velocities at

successive equal infinitesimal intervals of time, the answer

will be ^y ; but if we consider the velocities at equal intervals

of space, it will be f w. The former is the most natural sup-

position in this case, because it is the answer to the question

—What is the velocity with which the body would move,

uniformly, over the same space in the same time ?^a question

which implies the former supposition. We might frame a

similar question, of a less simple kind, to which the second

value above would be the answer.
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Again, if we wish to determine the mean value of the

ordinate of a semicircle, we might take the mean of a series

of ordinates equidistant from each other ; or through equi-

distant points of the circumference ; or such that the areas

between each pair shall be equal : in each case the mean
value will be different.

Thus we see that the Mean Yalue of any continuously

varying magnitude is not a definite term, as might be sup-

posed at first sight, but depends on the law assumed as to its

successive values.

238. Case of One Independent ITariable.—We-
will therefore suppose any variable magnitude y to be ex-

pressed as a function ^ [x) of some quantity x on which it

depends, and its mean value taken as x proceeds by equal

infinitesimal increments h from the value a to the value b.

Let n be the number of values, then nh = b - a. The mean
value is

- (a) + ^ (a + A) + ^ (« + 2/j) + . . .

I

.

But (Art. 90),

/iU(«) +^ (« + /»)+ ^ (a + 2/i) + ... . = (p{x)dx.

Hence the mean value is

(j){x)dx. (i)M= '

b - a

Examples.

1 . To find the mean value of the ordinate of a semicircle, supposing the
series taken ec[uidistant.

2r J.'
M=—\ ^r^ — a?dx = - Ttr,

4 '

viz., the length of an arc of 45°.

2. In the same case, let us suppose the ordinates drawn througk equidistant

points on the circumference.

I rw ^ 2M = -\ ?• sin (f6 = - r ; the ordinate of the centre of gravity of the arc.
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3. DeleTmine the mean horizontal range of a projectile in vacuo for different

angles of elevation from 45° - fl to 45° + 9 ; given the initial velocity V.

If a he the angle of elevation, the range is

M = — sin 2a.
9

I r V
Hence

[
^= —

- I — sin 2ada, hetween the limits 45° ± 9

therefore M =— -.

g 29

2 F'
The mean value for all elevations, from 0° to 90°, is .

^ 9
4. A nnmher n is divided at random into two parts ; to find the mean value

of their product.

If" IM=-\ x(n — x) dx = -n'.
« Jo 6

5. To find the mean distance of two points taken at random on the circum-
ference of a circle.

Here we may evidently tale one ofthe points, ^, as fixed, and the other, £,
to range over the whole circumference ; since by altering the position ofA we
should only have the same series of values repeated : let 6 be the angle between
AB and the diameter through A: as -we need only consider me of the two semi-

•circles,
-

2 f^ 4rM=-\ 2r eosBde = ^^.r=-(
tJo

6. To find the mean values of the reciprocals of all numbers from « to 2«,

when n is large ; that is, to find the mean value of the C[uantitie3

I I I I I II

n n n

that is, the mean value of the function —-, as a increases by equal increments

from I to 2 : therefore

f «* ' 1= — = -log:
h «x n

7. To find the mean values of the two roots of the quadratic

x' — ax + b = o,

the roots being known to be real, hut h being unknown, except that it is positive.
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In tliis case i is equally Hiely t9 have any yalue from o to — ; hence, for the-

greater root, a,

Jo

I f
4

4* Jo

= % o{2o-a)</o; sinoeZ = o(ai-o);

therefore Jf = |ai.
6

The mean value of the smaller root is ^.
6

The mean squares of the two roots are — a', — a'. These might be deduced

from the former results, since

M{x^) - aM{x) + M{b) = o.

8. Find the mean (positive) abscissa of all points included between the axis,

of X and the curve

The mean square of the abscissa is |c'.

239. If ilf be the mean of m quantities, and M' tlie mean
of m' others of the same kind, and if fi be the mean of the

whole m + m' quantities, we have evidently

mM+ m'M'
A»
= r— (2)m + m

Thus if it be required to find the mean distance of one
extremity of the diameter of a semicircle from a point taken
at random anywhere on the whole periphery of the semicircle

;

since the mean value when it falls on the diameter is r, and

the mean value when it falls on the arc is —, we have

/i =
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240. Case of Two or More Independent Variables.

—If s = (.r) be any function of two independent variables,

and X, y be taken to vary by constant infinitesimal increments

h, k, between given limits of any kind, the mean value of the

function s will be

Jjzdxdy
jfdxcly'

^^'

both integrals being taken between the given limits.

The easiest way of seeing this is to suppose jt, y, z the

coordinates of a point ; and to conceive the boundary, repre-

senting the limits, traced on the plane of xy, and then ruled

by lines parallel to x, y at intervals h, h apart. We have

thus a reticulation of infinitesimal rectangles hk ; and if at

«ach angle an ordinate s be drawn to the surface z = ^[x,y),

as the number of ordinates will be the same as that of rect-

angles, we shall have

volume jjzdxdy = sum of ordinates x hie;

also the plane area jjdxdy = number of ordinates x hic

;

so that dividing the sum of the ordinates by their number,
the above expression results.

It may be shown, in like manner, that for three or more
independent variables a similar expression holds.

It is evident that the above expression, viewed geometri-

cally, gives the mean value of any function of the coordinates

of a series of points uniformly distributed over a given plane

area.

Examples.

I. Suppose a straight line a divided at random at two points ; to find the

average value of the product of the three segments.

Let the distance of the two points X, Y, from one end of the line, be

called X, y. Consider first the cases when x>y\ the sum of the products for

these is half the whole sum ; hence

M:
i\'Soy^'-^'^^''-''^^^y=h

2. A numher a is divided into three parts ; to find the mean value of one

part
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Let a;, 3^, a - it - 8» be the parts

;

M I
a ra

Jo
xdxdy

ia
na-x

dxdy
Jo

I

3

This value might he deduced, without performing the integrations, by consider-

ing that the expression is the abscissa of the centre of gravity of the triangle

OAB ; OA, OB being lengths taken on two rectangular axes, each = a.

Of course the result in this case requires no calculation ; as the sum of the
mean values of the three parts must be = a ; and the three means must be equal.

The mean square of a part is ^ a''.

6

3. A number a is divided at random into three parts : to find the mean value
of the least of the three parts ; also of the greatest, and of the mean.

Let X, y, a — X — y,he the greatest, mean, and least parts. The mean value

of the greatest is M=~-^~ : the limits of both ^''

Ijdxdy
integrations being given by

x> y> a - x ~ y>o.

If X, y be the coordinates of a point, referred
to the axes OA, OB, taking OA = OB = a, the
above limits resfiiot the point to the triangle AVS
{AM being drawn to bisect OB) ; and the above
value ofM is the abscissa of the centre of gravity of

this triangle ; i. e. - of the sum of the abscissas of its

3
angles ; hence

Tig. 54-

M = - [a + -a+-a] = —^a.
3 \ 2 3/18

The ordinate of the same centre of gravity, viz.,

{-a + -a\ = -^a,
\2 3/18

is the mean value of the mean part ; hence the mean values of the three parts

required are respectively

II S I

18 ' 18 ' o

4. To find the mean square of the distance of a point within a given square

(side = 2a), from the centre of the square.

I ra ra
;

Jf=—

-

{x' + y'')dxdy<=-
^a J,aJ~a ;
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It is obvious that the mean square of the distance of all points on any plan»

area from any fixed point in the plane is the square of the radius of gyration of

the area round that point.

5. To find the mean distance of a point on the circumference ofa circle from
aU points inside the circle.

Taking the origin on the circumference, and the diameter for the axis, if dS
he any element of the area, we have

n

M='^—^ = —; Ur r^-dBdr=^--.
Tta' Tta' J Jo 9ir

241. Many problems on Mean Values, as well as on

Probability, may be solved by particular artifices, which, if

attempted by direct calculation, lead to difficult multiple

integrals which could hardly be dealt with.

Examples,

1. To find the mean distance between two points within a given circle.

If M be the required mean, the sum of the whole number of cases is repre-

sented by
{Trr'^fM.

ITow let us consider what is the differential of this, that is, the sum of the new
cases introduced by giving r the increment dr. If Ma be the mean distance of

a point on the circumference from a point within the circle, the new cases intro-

duced, by taking one of the two pointsA on the infinitesimal annulus 2itrdr,

are

TTc' Mit • Zirrdr

:

doubling this, for the cases where the point B is taken in the annulus, we get

d . [ (ttj-")" Jf } = 47r' Moi^dr.

Now Mo =— (Ex. S, Art. 240)

;

therefore w'r^M =— ir I r*dr;
9 Jo

„ 128
therefore M =—

.

45'r

2. To find the mean square of the distance between two points taken on any

plane area 0,.

Let dS, dS' be any two elements of the area, A their mutual distance, and

we have

M=^jSSSA'>dSdS'.
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No-w, fixing tie element iS, the integral of t^dS" is the moment of inertia
of the area n round dS ; so that if iiThe the radius of gyration of the area round
dS, I

M=-[[K'idS:
n

let r = distance of dS from the centre of gravity Q of the area, h the radius of
gyration round G ; then

Xi' = »-2 + i2;

therefore M = li^ \ - <{\ r^AS = iTe^ \a
thus the mean square is twice the square of the radius of gyration of the area
round its centre of gravity.

242. The mean distance of a point P witHn a given area
from a fixed straight line (which does not meet the area) is

CTidently the distance of the centre of gravity Q of the area
from the line. Thus, if A, B are two fixed points on a line
outside the area, the mean value of the area of the triangle
APB is the triangle AGB.

From this it will ioUow, that if X, T, Z are three points
taken at random in three given spaces on a plane (such that
they cannot all he cut by any one straight line), the mean
value of the area of the triangle XYZ is the triangle GG'Q",
determined by the three centres of gravity of the spaces.

Example.

I. A point F is taken at random within
a triangle ABC, and joined with the three

angles. To find the mean value of the
greatest of the three triangles into which
tbe whole is divided.

Let G be the centre of gravity ; then if

the greatest triangle stands on AB, P is

restricted to the figure GB.GK, and the
mtan value of AFB is the same as if i*

were restricted to the triangle GGK; hence
we have to find the area of the triangle

,

whose vertex is the centre of gravity of -^ ^
6CK, and base AB

;

Fig. 55.

therefore M=l{ACB-\-AKB + AGB) = - li + - + -\aBG;

hence the mean value is -3 of the whole triangle.

The mean values of the least and mean triangles are respectively - and—
9 i8

of the whole.

This question can readily be shown to be reducible to Question 3, Ait. 240.

[23]
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243. If iff be the mean value of any quantity depending
on the positions of two points (e.g. their distance) which are
taken, one in a space A, the other in a space B (external to
A) ; and if M' be the mean value when both points are taken
indiscriminately in the whole space A + £ ; JP, Mj^, the
mean values when both points are taken in A, or both in B,
respectively; then

{A + BfM' = 2ABM+A'M^ + B'Mj,. (4)

If the space A = B,

4M' = 2M + M^ + M^;
if, also, Mj^ = Mb,

2M' = M+M^:

thus if M be the mean distance of a point within a semi-

circle from a point in the opposite semicircle, Mi that of two
points in one semicircle, we have (Art. 241),

M+Mi = ^-^r.

To determine M or Mi is rather difficult, though their

sum is thus found. The value of M is —^^ r.

Examples.

1. Two points, X, Y are taien at random within a triangle. What is the
mean areaM of tiie triangle XYO, formed by joining them with one of the
angles of the triangle ?

Bisect the triangle by the line CD ; let Mi be the mean value when both
points fall in the triangle ACD; Mi the value when one falls in ACB and the
other in BCD ; then

2M= Ml + Mi.

But Ml = -M; and M2 = GG'C, where G, G' are the centres of gravity of

ACT), BCD, this being a case of the theorem in Art. 242 ; hence

JIfz = - ABC, and M=— ABC.
9 27

2. To find the mean area of the triangle formed by joining an angle of a

square with two points anywhere within it.
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By a similar method this is found to he

13

355

—= of the -whole square.

3. "What is the mean area of the triangle formed by joining the same two
points with the centre of the square f

We may take one of the points X always in the square OA ; take the whole
square as unity ; then if ^ be the mean, the sum t. q
of aU the cases is

4
-M:

42 42 4^

Ml, Mi, Ml being the mean areas when the second
point Y is taken respectively in OA, OB, and 00.
But Ml = Ml, for to any point Yin OG there cor-
responds one Y' in OA, which gives the area
OXS'=OXY;
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EZAMPLD.

Two segmenta, AS, CD, of a straight line have a common part CB ; to

find the mean distance of two points taken, one in AB, the other in CD.

2AB.CJ).M=AD''.-AD+CB'.- CB-AC^.-AC-BD'.-BD,
3 3 3 3

since the mean distance of two points in any line is - of the line

;

,^ ^ „ AD' +CB'-AC'- DB^
therefore m =

245. The consideration of probability may often be made
to assist in determining mean values. Thus, if a given

space 8 is included within a given space A, the chance of a

point P, taken at random on A, falling on 8 is

But if the space S be variable, and M {8) be its mean value,

p.™. (6)

For, if we suppose 8 to have n equally probable values

8„ 8„ 83 . . . ., the chance of any one 81 being taken, and of

P falling on 81, is

I 8,

nA

now the whole probability p = pi + Pi + p^ + . ,
.

; which leads

at once to the above expression.

The chance of two points falling on 8 is

i' =-^- (7)

In such a case, if the probability be known, the mean value

follows, and vice versA. Thus, we might find the mean value

of the distance of two points X, Y, taken at random in a line,



Case of Two or More Independent Variables. 357

by tte consideration that if a third point Zbe taken at random

in the line, the chance of it falling between X and Fis - ; as

one of the three must be the middle one. Hence the mean

2ffl"

distance is - of the whole line.

3

Again, the mean w'* power of the distance is , -— ,-, ,

[n + i){n + z)

where a = whole line. For if p is the probability that n more
points taken at random shall fall between X and Y,

M{XYY = a"p.

Now, the chance that out of the « + 2 points X shall be
2

one of the extreme points is ; and if it is so, the chance'^ n + 2 , '

that Y shall be the other extreme point is
+ I

Examples.

I. From a point X, taken anywhere
in a triangle, parallels are drawn to two
of the sides. Find the mean value of

the triangle UXV.
If a second point X' be taken at

random within ABC, the chance of

its falling in XJTV is the same as the
cliance of X falling in the correspond-
ing triangle X' IT' V; that is, of X'
falling in the parallelogram XC. Hence
the mean value of UXV = mean value
of XC. But the mean value ol {UXV ^

Fig. 57-+ XC) is - ASC; as the whole triangle

can he divided into three such parts by drawing through X a parallel to AS.'
Thus

M{UXV)=-tABC.

The mean value of UV is-AB. For UV is the same fraction of AB that the
3

altitude of X is of that of C: see Art. 242.

* The triangle may be considered equilateral : see note, Art. 243.
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CoK. Hence, if ^ be the perpendicular from X on A3, h the altitude of
the triangle ABC, we get

If the area^^C be taken as unity, we haye, since VXV:AXB =AXB:A3C,

(AXBY = UXV.

Thus the mean square of the triangle AXB is -. If two other points T. Z are

taken at random in the triangle, the chance of both falling on AXB is thus the

same as that of a single point falling on UXV; i.e. ^. Hence we may easily

infer the following theorem :

—

If three points X, Y, Z are taken at random in a triangle, it is an even

chance that 7, Z both fall on one of the triangles ti n
AXB, AXO, BXG. ^

2. In a parallelogram ABCB a point X is taken at

random in die triangle ABO, and another, Y, in ADG.
Find the chance that X is higher than Y.

Draw XS. horizontal : the chance is

mean area of ASK-^ ADO.

BvitASK^XUF, and the mean area of ZZTris ~ ACB H
I

°
(Ex. I) ; hence the chance is -.

6
A

3. If be a point taken at random on a tiiangle, and
lines be drawn through it from the angles, to find the

mean value of the triangle DBF. (Mr. Millbk.)

It will be sufficient to find the mean area of the triangle AEF, and subtract

three times its value from ABO. If we put a, $, y for the triangles BOO,
AGO, AOB, it is easy to prove that

ai:f=
Py

(a + j8)(a + y)
.ABO.

If we put the whole area ABO = i, and if

dS be the element of the area at 0,

0ydS

-'^'^-\\w^ -y)' B

he integration extending over the whole triangle. Fig. 59.

But Up, q are the perpendiculars from on the sides b, c, it may be easily

shown that the element of the area is

dS =
dpdq i

BinA bcBiriA
d$dy = 2dpdy.
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Thus the mean value of AMF becomes

JoJo (l-/3)(l-7) Jo' ° ' l-P

Again, by Art. 95, the definite integral

/3 log 3
'-T =

therefore

fi£h

Jo I-

jf=-x-z(i-^) = --3.

Hence the mean value of the triangle SSF is

10 - tt",

that of ABC being unity.

It is remarkable that the same value, lo — ifi, has been found by Col. Clarke

to be the mean area of a triangle formed by the jintersections of three lines,

drawn from A, B, G to points taken at random in «, S, c respectively.

4. To find the average area of all triangles having a given perimeter (2s).

By this is meant that the given perimeter is divided at random in every possible

way into three parts, a, b, c, and only those cases are taken in which a, b, e can

form a triangle ; then the mean value of

A = is[s-a){s-b)[s-c) AX Y B
Fig. 60.

has to be found.

Take AB = 2s, let X, Y be the two points of division, AX = x, AY= y

:

these are subject to the conditions

x<s, y> s, y-x<a.

A ,

•l>ow — = ^(s-x)iii-s){s-y + x);
Va

\ \

\/{s-x)[y-s){s-y + x) . dydx

••• -7.-3fM) = Tuf,
Vi dydx

J « jy-s

Again, by Art. 132, we have

Hence, Mean area = —- (25)2.
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In the same case we should easily find

Mean square of area = j-.

5. Three points are taken at random within a given triangle ; prove that the

mean area of the triangle formed by them is — of the given triangle.

Call the area of the given triangle A, the required mean M: we will first

prove that if Mo he the mean area when one of the three points is restricted to a

side of the given triangle,

M = -Mo.
4

Let A receive an increment of area <?A, hy adding to it an infinitesimal hand
included between the base a and a line parallel to it ; the increase produced in

the sum of all the cases is found by considering one of the random points X
taken in this band ; the additional cases introduced will be represented by

A'<ZA . Ma.

The whole increase is treble this, for we must consider also the cases when
Y, Z fall in this band (the cases when two ai the three fall in it may be

neglected, their number being proportional to the square of rfA). Now the sum
of all the original cases is I^M\ hence

d{t^^M) = it^^Modh..

M
Now — is constant for all triangles (see note,

A
Art. 243)

;

M t,

hence— (?.A*=3A'i!fo<i^A; ..M=-Ma.
A 4

Again, to find M^, consider the random point X fixed at a particular point

D of the base a, the other two points, Y, Z, ranging all over the triangle. Let

jlf'be the mean value cABYZ; the sum of all the cases, viz., A" if', maybe
decomposed into three groups : (i) when Y, Z are in ABI) ; (2) both va. ACB;
(3) one in each triangle

:

i. A ABO
.-. {_AB.CfM'= {ABJD)-. — ABB + (^Ci))». -^ ACS + zABB.ACD .

——,

by Ex. (i). Art. 243, and because in case (3) the mean value is the area of the

triangle formed by joioing i) with the centres of gravity otABB aai. ACD
(Art. 242). Let BB — x, altitude of triangle =^, and we get

Now when the point 2 falls on the element ix, the sum of all the cases is
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A^Mdx ; and hence, when X ranges from B to C, the whole sum of oases is

represented by

therefore «A^ifo = (ii')'-a*=-«A'.

I '2 1
Hence i/b = - A ; and therefore M=- Mt, = — A.

9 4 12

CoE. Hence, if four points. A, B, G, D, are taten at random within a

triangle, the chance that they determine a re-entrant quadrilateral is -. For

the chance that J) falls in ABC is the mean value of ABO divided by the

whole triangle, that is — ; and we have to add to this the chances that falls

2
in ABB, &c. The chance that ABCD is convex is -.

3
6. The mean distance of the vertex of a triangle from all points in the area is

equal to its distance from the centre of gravity, measured along a parabolic path,

which leaves the vertex in the direction of one of its sides, and reaches the

centre of gravity in a direction parallel to the other—the axis of the parabola

being parallel to the base.

Let an indefinite line AT be con- A
ceived to revolve round A, from the //\\
direction j4C to AB ; and as it revolves, // \^\
suppose that all the mass of the triangle / , ^ N^
ABG which lies to the right of it is t/-— -jf \\ ^\
transferred continuously to the vertex ji. y /\ \\ N^
The centre of gravity of the whole mass / n Vv >v

vnll thus describe a curve starting from / ^ \\ N.
<?, and ending at A. When the line is / ^^^\ \
at AP let the centre of gravity be at ^ ; g p' p q
and when it is in the consecutive position

AP', let the centre be at g'. As the I'ig- 62.

mass of the triangle APF' has been transferred to A, gg is parallel to AP\ also

, APP' 2 ,„
^^^ABO-i^^-^

2
since - AP is the distance traversed by the centre of gravity of the transferred

portion of the whole mass.*
2

But as - uiP is the mean distance of all points in APP' from A, the sum of

2
every element in APP' multiplied by its distance from A = APP" x -AP.

Hence the sum of all the elements gg', i.e. the whole arc GA = sum of every
element of ABG into its distance from A, divided by the area ABG, i.e. the
mean distance required.

* See Eankine, Applied Mechanics, p. 54.
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It is easy to show that iigTis drawn parallel to BC, we have

and that the curve is the parabola mentioned ahove. ForA and g are in directum
with the centre of gravity of ABP; and hence, since g is the centre of gravity
of ABF and of a mass at A equal to ABC,

AT BP BP c= —

»

and —^=, = -7-=j
2 a ' 2gT AT
- c

PROBABILITIES.

246. The calculation of Probabilities, wlien the number
of favourable cases, as well as the whole number of cases, is

finite, is not a subject for the Infinitesimal Calculus. It is

when the number of cases depends on continuously varying

magnitudes, and is therefore infinite, that recourse has to be
made to the methods of the Integral Calculus.

The same remark applies here which we had occasion to

make as to mean values (Art. 237). The value of the pro-

bability will depend on the law according to which we select

the series of cases which we take as representing the total

number—that is, it will depend on which variable (or varia-

bles) we suppose to be taken at random, that is, to proceed by
constant infinitesimal increments ;* in other words, to be the

independent variable (or variables). Thus, if we have to find

the chance of the line, drawn from a fixed point to a given

finite straight line, exceeding a given length, the results will

be different if, first, we suppose a series of lines drawn to

points taken at random on the given line, or, secondly, a

series of lines drawn in random directions from the fixed

point. In many cases, however, the problem has an obvious

sense which precludes any such uncertainty.

247. Let us consider a simple question on chances. Two
integers are chosen at random from o to 6 inclusive ; to find

* Of course a large number of values taken at random for a variable do not

really form an equi-diSerent series : hut, as they must give a number of points

(when measured along a straight line) of uniform density, they may be taken,

for the purposes of calculation, as equi-different.
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the chance that the greater of the two exceeds a given value,,

suppose 3. Here the whole number of cases, all equally

probable, is easily seen to be

1+2 + 3 + 4+5+6,
and the number of favourable cases is

4 + 5 + 6,

so that the required chance is -.

If, however, the question is not confined to integers, but
that the two numbers chosen may have any arbitrary values

from o to 6 ; or as we may state the question :—Two quan-

tities are taken at random from o to a ; find the chance that

the greater of the two is less than a given value b :

—

Let X be the greater ; then for any assigned value of x

the number of cases is measured by x (since the lesser may have
any value from o to ») ; hence the number of cases when the

greater falls between x and x + dx is measured by xdx ; the

whole number of oases is therefore xdx; and the favourable

cases are xdx. The required chance is therefore p = —
This instance will serve to show how the Integral Calculus

may enter into the estimation of chances. It is true that it

might easily be solved otherwise ; for if the two numbers are

considered as the distances from one end of the line of two-

points taken at random in a line of length a, and if we
measure a distance h from that end, the problem is really to-

find the chance that both points fall within b ; which chance-

is evidently —

.

ct

248. We proceed to give a few easy questions on proba-

bilities : general rules can hardly be given for their solution,

the number and diversity of the questions which may be

proposed being so great that no attempt seems to have been

made to classify or connect them in a regular theory. We-
will give, in particular, several on Local or Geometrical

Probability.
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Examples.

I. If an event B is known to have occurred in a certain century, the chance
that it was not distant more than n years from the middle of the century is of

2M
course ; hut if three events. A, S, C, are known to have occurred in the

lOO > I
> )

century, and that A preceded B, and S preceded 0, let it he proposed to find

how far this amount of knowledge alters the value of the chance for B.
Let X he the numher of years from the heginning of the century to the

event B ; then, for any assigned value of x, the numher of triple cases is

a:(loo— a:) : hence thenumher offavourable cases divided by the whole number is

!50+,i

a;(loo - x) dx
50-

n

p = -
_ n In
~ lOO \ 100

)•
(lUU

a: (100 -x) dx
[I

2. Two numbers, x, y, are chosen at random between o and a : find the

chance that the product xy shall be less than — (its mean value).

4
„ r f dx dy
Here p = •'•'

„ ^

the integral being limited by a > a: > o, o > « > o, and xy < —. We have
4

a
accordingly to integi'ate for y from a to o, when x is between o and - ; and from

4
a"^ ... " ,— to o, when x is between - and a ; thus
4x 4

a

fi
Pa qZ fj^ fii

adx +1 — dx= - -\— log 4.
Jn 4» 4 4

Hence
I I

,

i' = - + - log 2.

4 2

3. Two points are taken at random in a given line a ; to find the chance

that their distance asunder shall exceed a given value 0.

It is easy to see that the distances of two such points from one end of the

line are the coordinates of a point taken at random
in a square whose side is a. Thus to every case

•of partition of the line corresponds a point in the

square—such points being uniformly distributed over

its surface.

Thus, if in the above question x, y stand for the

distances of the two points, from one end of the line,

y being greater than x, we have to find the chance

of y - X exceeding e. The point P whose co-

ordinates are x, y, in the square OB^ (side = a),

may take all possible positions in the triangle OBI),

if no condition is imposed on it. But ii y — x > c,

then if we measure OS = c, the favourable cases

E
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occur only when F is in the triangle BRI ; hence the probability required

In fact this is only performing the integrations in the expression

farn-e
1 dxdy

p= .^ (< rs

I
dxdy

JoJo

4. Two points being taken at random in a line a, to find the chance that n»
one of the three segments shall exceed a given -g Z K N D'
length 0.

The segments being as before, x, y — x, a — y,

FS=x, PE=i
be two eases :-

PI=y -X. There -vrill

H
(I), li e>-a;t!siLeOV=Br=BZ=BN=e;

then it is easy to see that the only favourable »

cases are when P falls in the hexagon JJZNMJV;

Pl--

0BJD-3.USZ
OBI) = -(•-?-•)"

-OVI

Fig. 64.

(2). If o< -a; take OU=BV=c, as before; then the only favourable-
^

B K Z Dcases are when P falls in the triangle ItST;

EST
OBD

^
1 yn rxH

since FST = - ET"^, and ET=VT+ ES- VM
2 U

= 2e— (a — e).

Such cases of discontinuity in the functions

expressing probabilities frequently present them-
selves. The functions are connected by very
remarkable laws. Thus, in the present question, '' ^
if Pi =/(«), Pi = F{c), we have Fig. 65.

f(e)-f(fi-c) = F{a-c).

S. A floor is ruled with equidistant parallel lines ; a rod, shorter than the-

distance between each pair, being thrown at random on the floor, to find the
chance of its falling on one of the lines (Buffori a problem).

Let X be the distance of the centre of the rod from the nearest line, 6 the

inclination of the rod to a perpendicular to the parallels, 2a the common distance-

of the parallels, 20 the length of rod ; then as all values of x and 6 between their
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extreme limits are equally probable, tlie whole number of cases will be repre-

•sented by

£1-

'3 /*2

dxdS = Tta.

Now, if the rod crosses one of the lines, we must have c > ; so that the
cos fl

iavourable cases will be measured by

cnB(,

dx = 2e.

t2 rccnBfl

Thus the probability required is = —

.

This question is remarkable as having been the first proposed on the subject

now called Local Probability. It has been proposed, as a matter of curiosity,

to determine the value of tt from this result, by making a large number of trials

with a rod of length 2a : the difficulty, however, here consists in ensuring that

the rod shall fall really at random. The circumstances under which it is thrown

may be more favourable to certain positions of the rod than others. Though we
may be unable to take account d priori of the causes of such a tendency, it will

be found to reveal itself through the medium of repeated trials.

249. Sometimes a result depends upon a variable (or

variables) all the values of which are not equally probable, but

are such that the probability of a certain value for a variable

depends, according to some law, on the magnitude of that

value itself (and also, perhaps, on the values of other variables).

Thus a point may be taken in a straight line so that all

positions are not equally probable, but the probability of the

distance from one end having the value x, being proportional

to X itself. This would be in fact supposing the series of

points in question as ranged along the line with a demity

proportional to x ; as, e. g., if they were the projections, on

the line, of points taken at random in the space between the

line and another line drawn through one of its extremities.

To give an example :

—

Two points are taken in a line a, with probabilities vary-

ing as the distance from one end A ; to find the chance of

their distance exceeding a length c.

Let X, y, be the distances from A, and suppose y > x.
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Here the probability of a point falling between x and x + dx

is not proportional to dx, but to xdx ; and the result will be

ra

I

ydy

ydy

xdx . .

xdx >j / \

The mean values of the three divisions of the line, in the
same case, will be found to be

8 4 I— a, — a, -a.
15 15 5

The above value of p is also the value of the chance, that

the difference of the altitudes of two points within a triangle

shall exceed a given fraction — of the altitude of the triangle.
a

Examples.

I. Two points being taken on the sides OA, OB, of a square a^, tie chance
of their distance being less than a given value h is easily seen without calcula-

tiou to be —J, provided J < a ; as it is tie cbanoe of a point taken at random in

tbe square falling within a quadrant of a given circle. Suppose now that two
points are taken on OA, and two on OB, and that we take X, Y, the two points

furthest from on each side, to find the chance that their distance ZT is less

than a given length J ; (b <a).
Here the probability of X falling between x and x + dx is proportional to

xdx ; Ukewise for y ; hence

11
xydxdy

fa fo
'

xydxdy
Jo

5*

the upper integral being limited by x^ + y'' <V^ ; hence p =—-.

Thus it is an even chance that the point determined by the coordinates x, y

shall fall within the quadrant - ira*.
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2. In a circular target of area A the area of the bull's eye is a. If a

shot is heard to strike the target, the chance of its having hit the bull's eye is

of course —.* If, however, two shots have been fired, to find the chance that

the hest of the two has hit the bull's eye.

This is easily solved by elementary considerations ; as the chance of both

missing the bull's eye ia

(A- ay

Hence the required chance of the best shot having hit it is

'-^ = a['-a)-
3. Let it be proposed, however, to find the chance of the best of the two

shots (i.e. that nearest the centre) having hit any given area a, traced out on

the target.

The number of cases in which the worst shot falls on any element dS, at a

distance r from the centre, is measured by irr* diS ; hence the chance of the worst

shot striking the area a is

^^r^dS (over a) m
^^Jir'dS{oveiA)''M'

where M, m are the moments of inertia of A, a round the centre of the target.

Sow the probability of both shots missing a is

I 2

r-i^)'
hence that of a being hit (by one or both) is

/A-ay

and the chance of both hitting it is —^. But the chance of a being hit is

chance of beat + chance of worst — chance of both
;

hence iipi be the required chance, viz., of the best shot striking a,

m o* IA - b\ 2 am
where m, M are the moments of inertia above.

Or, we might have considered the number of cases in which the best shot

fails on the element dS, viz. , ir {S' - r^) dS, where R = radius of target. This

would have given the required probability

S'a — m
^'" JJ^^-if'

which is easily shown to be identical with the above value.

* That is, disregarding the effect or the aim directing it with greater proba-

bility to the centre of the target. This would be practically correct in the case

of a very bad marksman, who frequently misses the target altogether.
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Fig. 66.

250. Curve of Frequency.—In questions relating to

a variable, the probability of any value of which is a function
of that value itself, it is often

useful to consider what is called

a mne of frequency. Thus, if

the probabHity of a given value

of X is proportional to {x), and
we draw a curve y = C(^{x),

then when a great number
of values for x are taken, the

number in any element dx is

proportional to the area of the curve standing on that
element ; the ordinate at any point P representing the
density or frequency of the, points at P : the abscissas of all

points taken at random in the area of the curve are equally
probable.

Thus, if two points X, Fare taken at random in a straight

line AB, and X means always that

nearest to A, the curve of frequency
for Fwill be a straight line through
A ; that for X. a straight line through
B. This will often simplify ques-

tions : e.g. suppose we have to find

what is sometimes called the most
probable value for AT, i.e. such a
value AP that ^ P" is equally likely to exceed or to fall short

of it. Since the curve of frequency for Fis a line AC, we
have only to find P, so that PD bisects the triangle ABC ;

A Ti

i. e. AP = —r= because as many values of ^ F exceed AP as
•/z

fall short of it. The most probable value is not the mean
2 ,

value, viz., - AB, being the horizontal distance of the centre

of gravity of ABC, from A.
A point Y is taken at random in a line AB = a, and

then a pointX is taken at random in ^F (or a rod may be
supposed broken in two at random, and one of the pieces

then broken in two), to find the chance of the length of ^X
falling within given limits.

[84]

Fig. 67.
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.

Let X, y be the distances from A ; for any assigned value

dx
of y, the chance of X falling between x and a; + efo is —

;

y
hence the chance of X falling between
X and X + dx, and of T faUing between

y and y + dy, is measured by

dxdy
^

ay
'

hence the whole chance of X falling

between x and x + dxis

dx^^dy dx, a , ,— -^ = — log - = -dx log X,
ajxy a ° X

if for simplicity we put a = i.

Thus the curve of frequency for X is a logarithmic curve

BB, whose ordinate is

s = - log a!,

the frequency at A being infinitely great.

The area of this curve from to a; is

X log -

;

X

and this is the probability of AX being between and x

;

the whole area, when x = i, being i, as it ought to be, since

it is certain that X falls on AB. The chance of X falling

between given limits x', x", is of course

a!'log^-a!"log^.

To find the most probable value of x we should have to

solve the equation

x{i -log a;) =-.

This gives x about one-fifth of the line AB.
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The mean value of x is

xzdx

M = j^ one-fourtli of AB.
zdx

This last result might have been foreseen ; because if we
take a point at random in each of the segments AY, TB,
the line AB is divided into four parts, the mean values of
which must be the same, as each of them goes through the
same series of values as the others ; the sum of the mean
values being AB.

Examples.

r. A line is divided at random, and one of the parts again diyided at random
as above, to find the chance that no one of the three parts shall exceed the sum
of the other two (i.e. that a triangle might be formed by them.) (Cambridge
Math. Tripos, 1854.)

The probability that X, Y shall be taken in two assigned elements dx, dy is
^taking a = i),

This differential being integrated thimighout any Hmits gives the sum of the
probabilities of X, Y being found in each pair of values for dx and d/y which
enter into the summation :—that is, the oases being mutually exclusive, the
probability that X, Twill be found iu some one of those pairs.

In the present case the limits are equivalent to

I Ix<- <y <i, x>y .

Hence p=\ \ ——=log2—

.

]\)yA y 2

2. An urn contains a large number of black and white balls, the proportion
of each being unknown : if on drawing »» + « balls, m are found white and
n. black, to find the probability that the ratio of the numbers of each colour lies

between given limits.

The question will not be altered if

we suppose all the balls ranged in a line

AB, the white ones on the left, the

black on the right, the point X where
they meet being unknown, and all posi-

tions for it in AB being i priori equally A X~ .. _
probable ; then m + n points being taken -p. ,

at random in AB, m are found to fall on °' "'

AX, n on X£. That is, aU we know of X is, that it is the (m + i)'* in order,

[S4a]
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beginning from^, of m + » + i points falling at random oaAB. If AX = x,

JLB = I, the number of cases for X between x and x + dxia measured by

\m\n ^ '

Hence the probability that the ratio of the white balls in the um to the

whole number lies between any two given limits o, /8—that is, that the distance

from .4 of the point X lies between a and 3—is

I »•»(!- x)«

I
a" (l - »)"

Jo
dx

The curve offrequency for the point X will be one whose equation is

y = a:*" (l — »)".

The maximum ordinate KV occurs at a point K dividing AB in the ratio

m : n. This is of course what we should expect : the ratio of the numbers of

black and white balls is more likely to be that of the numbers drawn of each

than any other. The value for p above is simply the area of the above curve

between the values o, P, of x, dSvided by the whole area.

Let us suppose, for instance, that 3 white and 2 black balls have been

2 4
drawn ; to find the chance that the proportion of white balls is between - and -

of the whole—that is, that it differs by less than + - from -, its most natural

value. Here

IIJf ^
' 2256 18

,

x'-U-xfdx ^ ^

Jo

The above results will apply to any event that must turn out in one of

two ways which are mutually exclusive, this being the whole of our a priori

knowledge with regard to it—the ratio of the black or white balls to the

whole number, meaning the real probability of either event, as would be

manifested by an infinite number of trials. We will give one more example of

the same kind.

3. An event has happened m times and failed n times in »i + « trials. To

find the probability that, onj) + j further trials, it shall happen i) times and

fail ; times.

* For a specified set of m points, out of the m + n, falling on AX, the

\m + n

number msc>"{i - xYdx; the number of such sets is
, ;

.
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That is, thatp+qmoie points heing taken at random in AB, p shall fall in

AX, and q in^X. The whole number of oases is as before

:

m + w

I

ml «
{^AB]P*^ x">{i -xydx

\m + n

L^L».
X"' (i — xYdx.

When any particular set of p points, out of tliep + q additional trials, falls in

AX, the number of fayourable cases is

\m + n

\m\n
X'i'*P{l -x)»*iclx.

1.2. 3 {p + 9)But the number of different sets of « points is
I .2 . s . . .p . I .2 .3

.

Hence the probability is, putting as before Ip for i . 2 . 3 . . . ^,

pi =
fpH-? J

«""" (I -«:)"" <^1'

L^Li
i:

x'«{i-x)''dx

By means of the known values of these definite integrals (p. 117), we find

[p + q \m+p\n + q \m + n+ I

i>i
=

\p\_g \m\n ' \m + n + p + q+l'

For instance, the chance that in one further trial the event shall happen is

. This is easily verified, as the lineAB has been divided into m + n + 2m + n + 2

sections by the m + n+ i points in it, including X Now, if one more trial is

made, i. e. one more point taken at random, it is equally likely to fall in any
section ; and m + l sections out of the entire number are favourable.

4. Trace the curve of frequency of the ratio - ; a and i being numbers taken

at random within the limits + 1.

If we measure the values of

the ratio as abscissas along an
axis OX, and make OA = 1

;

OA' = - 1, AB = A'B' = I
; „.

then the line whose ordinates 5.
are proportional to the fre-

quency will be, for values of

T comprised between the limits

± I, the straight line BB'; but, for values beyond these limits, wUl consist of

the arcs BC, B'C of the curve x'y = 1.

It is thus an even chance that the ratio - Kes itself between the limits + i

:

this would also appear by a construction such as that given in the next Article.
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251. Errors of Observation.—One of the practically

most important, as well as the most difficult, departments
of the theory of ProbahUity is that which treats of Errors of

Observation. We will give here an example of the simplest

description.

Two magnitudes A and B are measured ; each measure-
ment being subject to an error, of excess or defect, which
may amount to + a, all values between these limits being
supposed equally probable.* To determine the probability

that the error in the sum, A + S, of the two magnitudes,
shall lie within given limits ; also its mean value.

Thus the angular distance of two objects A, C is some-

times found by measuring the angle between A and J3, an

intermediate object ; and afterwards that between £ and C,

and adding the two angles. If each measurement is liable

to an error + 5', all values being equally probable, to iind the

probability of the error of the result falling within assigned

limits : its extreme limits being of course ± 10'.

The question is more easily comprehended by moans of

a geometrical construction > than by b' k

integration.

TakeAB = 2a; then all the values

of the first error are the distances

from of points P taken at random
in AB

;
positive when in OB

;

negative when in OA. Make also

A'B' = 20 ; the values of the second

error are given by points in A'B'.

Take any values, OP = x for the first,

OP' = x' for the second : these values

taken as co-ordinates determine a point V corresponding to

one case of the compound error x + x'; and such points V
will be uniformly distributed over the square MK. The value

of the compound error t corresponding to the point V is

i = x+ x' = OS,

if VS be drawn at 45° to the axes. Now all values of the

• This supposition must not be taken to be practically correct. The Theory

,

of Errors shows that,the probability of an error of magnitude x is proportional

to e <^'.

p'
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errors x, of wliicli give x ¥ af the same, give the same value

for E ; hence all points on the line JI correspond to com-

pound errors of amount OS. Take Ss = ds; the numher of

compound errors between s and t + de ia the number of

points between JI and a parallel to it through s. Now the

area of this iafinitesimal strip is evidently

(2a - e) d£.

Hence the probability of the error being between e and
E + fl^E is

(2a - e) ds

i' = -^—-1—

•

40

This holds for negative values of e, provided we only consider

their arithmetical magnitude.

Thus the frequency of an error of magnitude e = 08 is

proportional to JI, the intercept of a line through 8 sloping

at 45°. The probability of the error e falling between any
two given limits OS, 08' is found by measiiring these

lengths (with their proper signs) from 0, along AB, and
dividing, by the area of the whole square, the area intercepted

on the square by parallels through 8 and S', sloping at 45°.

Thus the chance of the error falling between the limits

± a (those of the two component errors) is -.

The mean value of the error, strictly speaking, is ; but it

is evident that for this purpose we ought to consider negative

errors as positive; and consequently take the mean of the
arithmetical values of all the errors, which is the same as the

mean of the positive errors only; hence the mean error

required is

Mh] = ±-a.
3

The most probable value, such that it is an even chance that

the error exceeds it (since the triangle JKI must be— of the
4

whole square, for that value of 08), is

±0(2 - v/2) = + .5860.
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Let it be now proposed to find the probability of a given
error in the sum of A and B, assuming, according to the
modern theory of errors, that the probability of an error
between x and x+ dm ia either is

v;
e

" dx;

the coefficient —— being determined by the necessary con-
CVTT

dition that the differential, being integrated from oo to - oo,

must give unity, as the error must lie between these limits.*

Eeferring to the above construction, the number of values
of the first error between x and x + dx being proportional to

e ' dx,

and the number of values of the second error between a^ and
x'+ dx' being proportional to

x'

e'^dx',

the corresponding number of values of the compound error is

proportional to

_x' + x"

e " dxdx.

Hence the number of points, corresponding each to a case

of the compound error, in any element dS of the plane at a

distance r from the origin, is measured by

e dS;

which shows that the points have the same density along any

* It ia of course absurd to consider infinite values for an error : but the

curve y = e
"' tends so rapidly to coincide with its asymptote, the axis of x,

that the cases where x has any large values are so trifling in number, that it is

indifferent whether we include them or not.
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oircle whose centre is 0. Now the probability of this com-
pound error being between e and a + rfa is proportional to the

number ofpoints between J'Zand the consecutive line ; making,
as before, OS = e, 8s = ds. But this number is the same
as when the strip JI is turned round through an angle of

45°, because the points lie in concentric circles of equal den-
sity. Hence the number is proportional to

e "" dx-
'^^ -^d.— &

^^2 J-oo -v/z

AS the perpendicular from on JI is —=.

-•2
Thus the probability of a compound error between £ and

t + c?£ is proportional to

and as this, when integrated between the limits + oo , must
give the probability i, the value of ^ is

1 -'-

p =—-^e "'de.
Cy^2TT

It thus follows the same law as the two component errors,

c^/a taking the place of c.

252. Various artifices have been employed for the solution

of different interesting questions on Probability, which would
be found extremely tedious, or impracticable, if attempted
by direct integration. For example :

Two points are taken at random within

a sphere of radius r; to find the chance that

their distance is less than a given value c.

Let F = number of favourable cases,

JF"= whole number; then

^•^
^ Fig. 72.

Let us consider the differential dF, or

the additional favourable eases introduced by giving r the

increment dr, c remaining unchanged.
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If one of the points A is taken anywhere (at P) in the
infinitesimal shell between the two spheres, then drawing a

sphere with centre P, radius c, all positions of the second
point, B, in the lens EB common to the two spheres, are

favourable ; let i = volume EB, then the number of favour-

able cases whenA is in the shell is

^irr^dr.L:

doubling this, for the cases when B is in the same shell,

dF=8Trr^Ldr.

Now it may be easily proved, from the value for the volume
of a segment of a sphere, that

_ 27r , TTC*

3 4»-

hence F= Sir'i- c^r^ --c^r^ + C
\9 8

C being an unknown constant ; i.e. involving c, but not r
;

P c^ g c" qC
therefore p = —

r

=-t 7--r + --T-
1 6 , „ r' 1 6 r* 2 r"

9

Now the probability = i if >• = - c

;

therefore i = 8 - 9 + - x 64 -; .-. -C= -^c'l
2 e" 2 64

, c' g c* 1 c'
hence P = -i 7-4 +

i-

If the two points be taken within a circle, instead of a
sphere, it may be proved by a similar process that

c' 2 / c'\ . , c I c f e
ffl = — + - I - -J sm-' .- 2 + -

r tt\ r 2r a,Tr r\ r)J'-?
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It is a remarkable fact, pointed out by Mr. S. Eoberts,,

that if we draw the chord EI), the probability in the case of

the circle is,

2 . segment EQD + segment EPD
,

area of circle EMI)

and also, in the case of the sphere,

2 . volume EQD + volume EPD
P volume of sphere EHD

These results evidently suggest that there must be some
manner of viewing the question which would conduct to

them in a direct way.

Examples.

I. Three points 'being taken at random -within a sphere, to find the chance-

that the triangle which they determine shall he aoute-angled.

As the prohahility is independent of the radius of the sphere, it is easy to

see that we may take the farthest from the centre of the three points as fixed on
the surface of the sphere. For Up he the prohahility of an acute-angled triangle-

in this case, p will also he the probability of an aoute-angled triangle for each

position of the farthest point, as it travels over the whole volume of the sphere.

Hence p will be the probability when no restriction is put on any of the points.

Take then A, one of the points on the surface of the sphere ; two olhers, B, G,

being taken at random within it, and let us find the

chance of ABC being obtuse-angled : to do this, we
will find separately the chance of the angles A, B, G
being obtuse : the events being mutually exclusive,

the probability req^uired will he the sum of these

three.

(l). To find the chance that^ is obtuse, let us fix

B ; then, drawing the plane AV perpendicular to AB,
the chance required is

volume of segment ABV
volume of sphere

Let r he the radius of sphere, p =AB, fl = / OAB ; then the volume of th&

segment jiifFis

J x»^ (I - cos ef (2 + cos e)

;

therefore whenB is fixed the chance is

J (I -cos 9)^(2 + cos 9).
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Now let -B move over the whole volume of the sphere, and we have for Pa,
the piobability that A is obtuse.

Fa
6]

n

~r» (2-3cos9 + oos3fl)p2sinfl(fflrfp.

Hence Pa = —

.

70

chance is

I

4

(2). To find the chance, Pb, that B is obtuse. Fix B as before ; then the
4:hance that B is acute is

segment J/iffiV

^here

Now, voIume^B'i\r= ^m^ f- + l - cos9
J [

2 + cos 9 -- ) ; so that the

|2-3cose + cosS9 + 3^(i -cos2fl) + 3^cosfl -^|.

Hence the whole probability (i — Pb) that B is acute ia

IT

7 firarcosfl t 1? d'1

8^1 J

p-3cose+cos'9 + 3^(i-cos»e) + 3!-jCosfl-y p2sin9(ffl(f;..

Performing the integrations, we find Ps = —

.

7°

The probability for C is, of course, the same as for B ; hence the whole pro-

bability of an obtuse-angled triangle is

P=PA + PB + Fa=^+^^+— = ^.
70 70 70 70

Hence, the chance of an acute-angled triangle is —

.

70

For three points within a circle the chance of an acute-angled triangle is

7r2 8"

2. Two points, A, B, are taken at random in a triangle. If two other points,

C, B, are also taken at random in the triangle, find the chance that they shall lie

on opposite sides of the line AB.
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The Bides of the triangle 2(5(7 produced divide the whole triangle into seven,

spaces. Of these, the mean value of

those marked (a) is the same, viz., the

mean value of ABC; or, i^ of the

whole triangle, as we have shown in

Art. 245 ; the mean value of those

marked (j8) heing f of the triangle.

This is easily seen : for instance,

if the whole area = i, the mean value
of the space. PBQ gives the chance
that if the foui'th point D be taken
at random, B shall fall within the

triangle ADC: now the mean value

otABC gives the chance that 2) shall

fall within ABC ; but these two
chances are equal. Fig. 74.

Hence we see that if A, B, he
taken at random, the mean value of that portion of the whole triangle which
lies on the same side of AB as C does is ^ ot the whole ; that of the opposite

portion is ^.
Hence the chance of C and D falling on opposite sides of AB is ^.

253.. Random Straight Unes.—If an infinite number
of straight lines be drawn at random in a plane, there will

be as many parallel to any one given direction as to any other,

all directions being equally probable ; also those having any
given direction will be disposed with equal frequency all

.over the plane. Hence, if a line be determined by the co-

ordinates, p, b), the perpendicular on it from a fixed origin 0,

and the inclination of that perpendicular to a fixed axis ; and
if p, It) be made to vary by equal infinitesimal increments,

the series of lines so given will represent the entire series of

random straight lines. Thus the number of lines for which

p falls between p and p + dp, and to between id and w + dw,.

will be measured by dp duo, and the integral

SSdpdio,

between any limits, measures the number of lines within those

limits.

It is easy to show from this that the number of random
lines which meet any closed convex contour of length L is

measured by L.

For, taking inside the contour, and integrating first

for^, from o to p, the perpendicular on the tangent to the

contour, we have ]pdw : taking this through four right angles-
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for b), we have by Legendre's theorem (p. 232), N being the

measure of the number of lines,

•>0

pdb) = L.

Thus if a random line meet a given contour, of length L,

the chance of its also meeting another convex contour, of

length I, internal to the former, is

I

p^j-.

If the given contour be not convex, or not closed, N will

•evidently be the length of an endless string, drawn tight

^iTOund the contour.

Examples.

L. If a random line meet a closed convex contour, of length X, the chance

of it meeting another such contour, external to the former, is

X-T

where X is the length of an endless hand
enveloping both contours, and crossing

between ^em, and Y that of a band also H
-enveloping both, but not crossing.

This may he shown by means of
Legendre's integral above ; or as fol-

lows :

—

Call, for shortness, lf[A)t}ie number
of lines meeting an area A; N[A,A')
the number which meet both A and A' ; then

N{SJR.OQPB) + N{S'Q'OR'F'E') = N{SROQFE+ S'Q'OR'FE^

+ N{SSOQI'S, S'QOKPST),

since in the first member each line meeting both areas is counted twice. But

the number of lines meeting the non-convex figure consisting of OQPSSS and

OQ'S'S'JP'S' is measured by the hand T, and the nimiber meeting both these

areas is identical with that of those meeting the given areas O, O'; hence

x= T+N{a,a').

Thus the number meeting both the given axeas ia measured hy X— T. Hence

the theorem follows.
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2. Two random chords cross a ^vkn convex boundary, of length J» and area
n ; to find the chance that their intersection falls inside the boundary.

Consider the first chord in any position ; let G be its length ; considering it

as a closed area, the chance of the second chord meeting it is

20

L'

and the whole chance of its co-ordinates falling in dp, da, and of the second
chord meeting it in that position, is

20 dp da 2 _ ,

LUd^^'T^'^^^-

But the whole chance is the sum of these chances for all its positions
;

therefore prob. = — M Cdp da.

Now, for a given value of a, the value oi\Cdp is evidently the area a ; then
taking a from ir-tQ O,

required probability= -=5-

.

The mean value of a chord drawn at random across the boundary is

jl^^
SJOdpdu _':ra i

Sjdp da Z
'

3. A straightband of breadth c being traced on a floor, and a circle of radius
r thrown on it at random, to find the mean area ofthe band which is covered by
the circle. (The cases are omitted where the circle falls outside the band.)*

If S be the space covered, the chance of a random point on the circle falling
on the band is

_ M{S)

This is the same as if the circle were fixed, and the band thrown on it at
random. Now let .4 be a position of the ,— —
random point : the favourable cases are when y^^^ "^><^''^--^
KK, the Hseetor of the hand, meets a circle, /' /^ ^-"'^--X^i.^
centre A, radius Jo ; and the whole number /''

/,.^'^'\!--'"''l,^\^
are when SK meets a circle, centre 0, radius ^/-T^-"—^.^^""'''^ \ 'i

r + \e; hence (Art. 245) the probability is '^-r'''
',-^'''-

I
•

_ 27r
.
!« _ c ^T \

i . ! / .'

~ 2ir{r+ Jc)
~

2r + c \ ^v \....-/ /
This is constant for all positions of A ;

'^-.. -''

hence, equating these two values of p, the Fig. 76.

* Or the floor may be supposed painted with parallel bands, at a distance
asunder equal to the diameter ; so that the circle must fall on one.
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mean area required is

jr(«) =
2r + c

The mean value of the part of the circumference which falls on the band i»

the same fraction of the whole circumference.
2r + o

If any convex area n, of perimeter i, he thrown on the band, instead of »
circle, the mean area covered is

MiS) = - n.
^ ' £ + irc

254. Application to Evaluation of Definite Inte-
grals.—^The consideration of probability sometimes may h&
applied to determine the values of Definite Integrals. For
instance, if » + i points are taken at random in a Hne, I, and

we consider the chance that one of them, X, shall be the last,,

beginning from the endA of the line, the number of favour-

able cases, vsrhen X is in the element dx, is, if AX = x^

measured by
x''dx.

Hence I

Xfdll!

/
H+l

but the chance must be : we thus have an independent
n + I

proof that

as'^dx

;o «+ I

when n is an integer.

Again, ii m + n+ i points are taken, to find the chanefr

that X shall be the (m + 1)** in order ; the number of favour-

able cases when X falls in dx and a particular set of m point*

fall to the left of X, is

a;™ (1 - xYdx; taking 1= 1;

hence the whole number of favourable cases is

\m+nr^
(if{i - xYdx;
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tlu8 is the required probability, since ;»»+'»+i = i. But the

value is , as every point is equaUy likely to fall in

the (ot + i)"* place : we thus deduce the definite integral

fi \m\n
«'» (i - xY dx = ,

*— ^-
.

Jo I m + w + I

when m, n are integers. (See Art. 92.)

255. To investigate the probability that the inclination

of the line joining any two points in a

given convex area Q, shall lie within

given limits.

We give here a method of reducing

this question, to calculation, for the sake

of an integral to which it leads, and
which is not easy to deduce otherwise.

First, let one of the points, A, be
fixed ; draw through it a chord I'Q = C,

Fig 77
at an inclination B to some fi±ed line

;

put AP = r, AQ = r'; then the number of cases for which
the direction of the line joining A and B lies between 8 and
B + d9 ia measured by

J {r' + r") dd.

Now, let A range over the space between PQ and a
parallel chord distant dp from it, the number of cases for

which A lies in this space, and the direction of AB from
6 to 6 + dd, is (first considering A to lie in the element
drdp)

idpddl {f + r'^)dr = ^C^dpdB.

Let p be the perpendicular on the chord G from a given

origin 0, and let o) be the inclination of p (we may put dm
for dB), then G will be a given function of ^, tu; and in-

tegrating first for u) constant, the whole number of cases for

which o) falls between given limits in', id", is

'A>\
C^dp;

the integral \C^dp being taken for all positions of C between

[26]
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two tangents to the boundary parallel to PQ. The question

is thus reduced to the evaluation of this integral; -which,

of course, is generally difficult enough: we may, however,

deduce from it a remarkable result ; for if the integral

^llC'dpdu,

be extended to aU possible positions of C, it gives the whole

number of pairs of positions of the points A, B which he

inside the area ; but this number is Q' ; hence

llC^dj[>du = 3Q',

the integration extending to all possible positions of the

chord C; its length being a given function of its coordinates

Cor. Hence, if L, Q, be the perimeter and area of any

closed convex contour, the mean value of the cube of a chord

drawn across it at random is —=-

.

It follows that if a line cross such a contour at random,

the chance that three other lines, also drawn at random, shall

meet the first inside the contour is 24 —

.

JLd

Some other cases of definite integrals deduced from the

theory of Probability are given in a Paper in the Phib-
sophical Transactions for 1868, pp. 1 81-199. See also Pro-

ceedings, Lond. Math. 80c., vol. viii.

Several Examples on Mean Values and Probability are

annexed ; some of them, as also some of the questions which

have been explained in this Chapter, are taken from the

Papers on the subject in the Educational Times, by the Editor,

Mr. Miller, as also by Professor Sylvester, Mr. Woodhouse,

Col. Clarke, Messrs. Watson, Savage, and others. Some few

are rather difficult; but want of space has prevented our

giving the solutions in the text.

We may refer to Todhunter's valuable History of Pro-

hdbility for an account of the more profound and difficult

questions treated by the great writers on the theory of Pro-

bability.
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Examples.

1. A oiord is drawn joining two points taken at random on a circle : find the

mean area of the lesser of the two eegmente into which it divides the circle.

Ans. .

4 T

2. Find the mean latitude of all places north of the Equator.
Am. 32°.704.

3. Find the mean square of the velocity of a projectile in vaciio, taken at all

instants of its flight tiU it regains the -velocity of projection.

'Ans. V^oow'a +iV sia^a, where K= initial velocity, and = angle
of projection.

4. If X and y are two variables, each of which may take independently any
value between two given limits (different for each), show that the mean value

of the product xy is equal to the product of the mean values of sc and y.

5. If -X, F are points taken at random in a triangle ABC, what is the

chance that the quadrilateral ASXYis convex ?

. I

AilS. - .

i

For, it is easy to see that of the three quadrilaterals ABXT, ACXY, JiGXY,
one must be convex, and two re-entrant.

6. Find the mean area of the quadrilateral formed by four points taken at

random on the circumference of a circle.

7
Ans. — (area of circle).

TT

7. A class list at an examination is drawn up in alphabetical order ; the num-
ber of names being n. If a name be selected at random, find the chance that the
candidate shall not be more than m places from his place in the order of merit.

. zm+i mlm + i) ,.- _ m,- • ^ p ^v i r^tAns. !

—

. (N.B.—Ihis is not, of course, the value of the
n n'

chance after the selection has been made : this may easily be found.)

8. A traveller starts from a point on a straight river, and travels a certain

distance in a random direction. Having quite lost his way, he starts again at

random the next morning, and travels the same distance as before. Find the

chance of his reaching the river again in the second day's journey.

Ans. -

.

4
9. Two lengths, b, V, are laid down at random in a line a, greater than

either :' find the chance that they shall not have a common part greater than c.

[a-b-V + c)''

.a.ns. ; .

[a-b)ifl-l>)

[25 a]
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10. A person in firing lo shots at a mark has hit J times, and missed 5 . Find
the chance that in the next 10 shots he shall hit 5 times, and miss 5.

27 . 4 . 7 756Am. ^ = -^—. If the first 10 shots had not been fired, so that

nothing was known as to his skill, the chance would he — -if he-
II

had been found to hit the mark half the number of times out of a

large number, the chance would be -~.
256

11. If a line I he divided at random into 4 parts, the mean square of one

of the parts is — l^: but if the line be divided at random into 2 parts, and

each part again divided into 2 parts, then the mean square of one of the 4 parts^

is -P.
9
12. Three points are taken at random in a line I. Find the mean distance

of the intermediate point from the middle of the line.

Alls. —pi.
16

13. A certain city is situated on a river. The probability that a specified

inhabitantA lives on the right bank of the river is, of course, J, in the absence
of any further information. But if we have found that an iniabitant B lives

on the right bank, find the probability that A does so also.

2
Ans. -. (N.B.—It is here assumed that every possible pai'tition of the

number of inhabitants into 2 parts, by the river, is equally probable

a priori.)

14. If ^, B, C, D are four given points in directum, and 2 points are taken

at random in AD, and one is taken in BC: find the chance that it shall fall

between the former two.

Ans. 2^j
|i BG^ + BC{AB + CD) + 2A3 . CD

j

.

15. It x = X + i/, where x may have any value from o to a, and y any value
from o to i : find the probability that z is less than an assigned value c (supposing

Ans. (i) \i e<b, pi=—-.
Zab

(2) lia>c>l, p2 =
''~'^

.

a

(3) If Off, ^3=1-^ '-

2ab

If we denote the functions expressing the probability in the three

cases by /i(«, *, c), ft {a, b, c), fata, b, c), we shall find the rela-

tion

/i {«, *, c) +/a («, b, c) =/j (a, b, c) +/, (S, a, c)
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t6. In the cubic equation

x' +px+ g = o,

p and q may have any values between the limits + r. Find the chance that the

three roots are real.

Am. — V 3.
45

17. Two observations are taken of the same magnitude, and the mean of the

results is taken as the true value. If the error of each observation is assumed
to lie within the limits + o, and all its values be equally probable, show that it

is an even chance that the error in the result lies between the limits + 0.293 a.

18. A point is taken at random in each of two given plane areas. Show
that the mean square of the distance between the two points is

F + k'^ + A»

;

where A is the distance between the centres of gravity of the areas ; and A, k'

are the radii of gyration of each area round its centre of gravity.

19. The mean square of the area of the triangle formed by joining any three

3
poiats taken in any given plane area is- /s^A* ; where A, k are the radii of gyra-

tion of the area round the two principal axes of rotation in its plane.

If one of the points is fixed at the centre of gravity, the value is fA^A*.
{Mr.' 'Woot.HousE.)

20. A line is divided at random into 3 parts. Find the chance—(i) that

they will form a triangle ; (2) an acute-angled triangle.

Ans. (i)- P\ = 1-

(2). i)2 = 3 log 2 - 2.

21. A line is divided into n parts. Find the chance that they cannot form
a polygon.

Ans. —-,•

22. If two stars are taken at random in the northern hemisphere, find the
chance that their distance exceeds 90°.

Ans. -,

23. The vertices of a spherical triangle are points taken at random on a
sphere. Find the chance—(i) that aE its angles are acute

; (2) that all are

obtuse. J T 31

24. Show that the mean value of -, where p is the distance of two points
P

taken at random within a circle, is—

.

37rr
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25. Two equal lines of length a indude an angle 6 : find the chance that if

two points P, Q are taken at random, one on each line, their distance PQ shall

be less than a.

Am. (I). When - > 9 > -
; ^1 = . , + 2 cos B.

* '
2 3 j 2 sin 9

(i). "When 9 > -
; Pi = ^^.'

2 2sme

Here the functions are connected by the relationJ (9) + J(ir - 9) =/ (9) +/ (ir- fl.)

26. The density of a city population varies inversely as the distance from a

central point. Find the chance that two inhabitants chosen at random within a

radius r from the centre shall not live further than a distance r from each other.

ir TT

I 1 , 2 / Vix I t'^ede 3 f^ edB
Ana. p= log3 + - |l-— | +— -r—r + — -:—;

;

3 4'r\ 2/ 2irJoSin9 2irjjr8infl'

a

whence^ = 0.7771. This result is easily obtained by employing

the values given in Question 25.

27. Four points are taken at random within an ellipse. Show that the

35
chance that they form a re-entrant quadrilateral is -.

36
28. Find the mean distance of two points within a sphere. Am. — r.

29. Three points A, B, C are taken within a circle, whose centre is 0.

Find the chance that the quadrilateral ABCO is re-entrant.

I 4
Ana. -+-^..

4 3'"

30. Find the chance that the distance of two points within a square shall

not exceed a side of the square.

Ant. p = w---r.
o

31. In the same case, find the chance that the distance shall not exceed an

assigned value c ; a being the side of the square.

58 / 8 I \

Ans. (l). When c<a;p = —A ira' ac-\- -c^].
a* \ 3 2 /

(2). When«>«;i, = 4^-5sm->--.-+l-^V.»-«»-2 --_, + -.

32. Three points are taken at random on a sphere : the chance that in

the spherical triangle some one angle shall exceed the sum of the other two

is -. Also the chance that its area shall exceed that of a great circle is -.

33. If a line be divided at random into 4 parts, show that it is an even

«hance that one of the parts is greater than half the line.
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34. Prove that the mean distance of a point within a triangle from the
vertex C is

lia + b {a-h){a'-V^) A^, a+i + c)

where h is the altitude of the triangle. (See Ex. 6, Art. 242.)

35. The mean value of the distance hetween any two points in an equilateral

triangle is

^=l.(i + ilog3).

This question may be solved by proving that M= - Ma, where M^ is the

mean distance of an angle of the triangle from any point within it. For, let

Mti = /lAl, where /i is constant, and A = area of the triangle. Take now any
element dS of the triangle ; draw from it parallels to the sides to meet the base

;

let 8 be the area of the equilateral triangle so formed : the sum of the whole
number of cases will be equal to

6 |[s./iS!.rf5=J!fA2,

if dS is made to range over the whole triangle : if we call the whole triangle

unity, and put dS = 2dad^, as in Ex. 3, Art. 245, B = o^, and the integral

becomes — u. = M. The result then follows from 34.10'^

36. From a tower of height h particles are projected in all directions in

space with a velocity due to a fall through h. Show that the mean value of

the range is J(f= 2A I -^ 1 - x^. dx.

(Pboi'. 'Wolstenholme.)

37. In » quantities a,h,c,d each of which takes independently a

given series of values «i, 02, as, ... . ; h, h, h, -, &c., (the number ofvalues

is different for each), if we put

2a = a + b + c + d + .... + &c.,

and for shortness denote " the mean value of a;" by Mx; prove that

if2a = Jf« + Jfi + JKc +.... + &o. = SMa,

M (2«)' = (iMaf - 2 {Ma)^ + 3M:{a^).

38. Two points are taken at random in a triangle. Find the mean area of

the triangular portion which the line joining them cuts off from the whole

9
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CHAPTER XIII.

ON FOURIER S THEOREM.

256. In many physical investigations it is of importance to

express a function /(») in a series of sines and cosines of

multiples of x. We propose to investigate the form of such
expression, and the conditions under which it is possihle.

Let us commence by assuming that f{x), between the

limits + IT and - ir, is capable of being represented by a
series of the required form : thus suppose

fix) = tta + ai cos X + Ui 00s 2x + ... + On cosnx + ...

+ 61 sin X + b^ sin 2x + . . . + b„ ^ha. nx+ . . . (i)

Here, since this relation is supposed to hold for all values

of X between + tt, we get, on multiplying by cos nx and inte-

grating,

if if"'
f[x) cos nxdx = - /(») cos nvdv. (2)

T 1" J-ir

«« = -

Also

and

IT

flo

/(») Binnvdv,

Substituting in (i) it becomes

if I ^-4""°°
f"

f(^r) =— f{v) dv + -'^ cos nx cos nv f{v) dv

I _-4"=" . f
+ - V sin «a; sin nv/(v) dv

I _. ^W= oo
f""

fMdv+-S, cosn(v-x)/(v)dvj (3)
1

2ir



Fourier's Theorem. 393

^
It should be noticed that when /(a) is an even function of

hK its development in general consists only of cosines ; if <p{x)

Tdo an odd function, its development contains sines only.

We proceed to give an a posteriori verification of equa-
tion (3), and to examine the conditions under which it holds
^ood.

The right-hand side of this equation may be written

r

f{v) C?0 (^ + cos + cos 2fl + . . . + COS «0 + &0.),
n

Avhere 6 = v - x.

But, by Trigonometry, we readily get

1 a a „ sin (w + i)
5 + COS + COS 20 + . . . + COS «0 = :

—

r?r-

'

2 sm^y

Hence, to verify (3), it remains to prove that

J \ ) »=»
2,r ]J ^ ' sm ^ (« - x)

. Um.

n-x

I ,, . sin(2w+ i)s , .

f{x + 28) ^ ^ ds, (4)
/tt J TT+x sin z

where z = J(» - «).

257. We shall proceed to investigate the limiting value

of the definite integral

f*
sin as .

"when a is indefinitely great.

First, we can see that

lim.
a, — 00

'^^ sin as (s) dz = o,

Jff

where h and g are positive, provided (2) and ^'(z) are finite
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for all values of s between the limits of integration. For,

integrating by parts, we have

, . , cos as , .

sm az ^(z) az =
(p (z) + ^'(,) e^^rf,.

Now, when it = oo and (A), ^ (g) finite, the term outside

the sign of integration vanishes. Also, if ^'(z) be finite for

all values between the limits, the latter integral is also

evanescent.

XT i™ f* sin ns „, . , ,- C^ sin as „, . ^ , ,

Hence ^i -— f{z)dz=^-\ —. f{z)dz, 5)
''="Jo sms'^' "-"Jo sinz''^''

^'"

provided /* and g are each positive and less than tt, and/(s)

satisfies the above conditions.

In the same case we see that

sin az
f{z)dz = o. (6)

Hence, with the same conditions, the values of

f* sin az ,, ., , f* sin az .

—. f(z)dz and fiz)dz
J„ sin s ^ ^ '

Jo z •'

'

are known, if we can find their values for any one value of

h, however small.

Now, when h is very small and /(s) continuous, we may
assume, in general, f{h) =/(o).

and therefore

Also, ^^^

sm as
/(zyz=/(o)j*

sm az

sm as , f* sins , r"sins , ir— dz = \ dz = dz = -.

Jo 2 Jo » 2

(Art. 116.)
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258. Another investigation, whicli is a modification of

that given by Poisson, is here added. We readily see, by
Trigonometry, that

I -A'
.-, ...—7^= I + 2A cos(0-/3) + 2A'' cos 2 (9-/3)

+ . . . + 2^" COS n (0 - /3) + . .

.

Hence,

(i -h')f(e)dd
/ddO + ^h" f{B)cosn{9-(3)de.

(11)

I - 2hooa{e-[i)+h'

Consequently, i
[
/(9]d6

+'^''"°
{ /(d) cos«(0-/3)rf9

_ lim. 1^
{i-h')fie)dd

(,2)
J* I - 2h cos (0-/3) +

A''

But, when i - A is indefinitely small and/(0) finite, the

coefficient of dd in this integral is indefinitely small, unless

when - /3 is very small. Consequently, if /3 be outside the

limits of integration, we have

lim. C {i-h')f{e)de

js I - 2h cos (0 - /3) + K

Thus, when /3 is outside the limits.

= o. (13)

/(0) de + ^~'°\ /(0j 008 w (0 - /3) <?0 = o. (14)
«=i Ji

In particular we have

n-to rzTT

f[B)dB + ]^ /0 . cos«(0 + /3)-^0 = o, (15)

where /3 is positive.

Again, if /3 lies.between the limits of the integral in (12),

we need only consider the portion of the integral arising from

values of 0, which are indefinitely near to )3. Accordingly,

if /(0) be continuous,

(i-^')/(0)^0 ^
p
- {i-h?)dB

I - 2h cos (0 - /3) + A' "^^^^
Jo I -2Acos(0-/3) +

A'"
lim.
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Again, whatever be the value of h,

p- (i -/t')dd
^ f-"-/s (i - h') <

Jo I - 2/i COS (0 - j3) + A»
~

_
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-3 1 - 2h coaz + 1^

(i-/i')dz

-J. ^ = 2Tr. Art. 1 8.]
I - 2A cos S + A*

^ *

Hence,

lim. {i-h')f{Q)de

I - 2h cos (0 - )3) + A'
= 2;r/(/3). (1 6)

Consequently,

f2ir _j'> = "' fair

'r/(/3) = i f[e)dB +% /iB)cosn{d-l3)de. (17)
Jo. n=i Jo

This is usually called Fourier's theorem.
Also, by aid of (15),

TT . r^"

-/;/3) = 2""°° sin MjSJ /(0) sin uO d9.
2 »=1 Jo

259. We shall next investigate the limit when a = co for
the integral

cos Ma; cos uidudi

_ 1- "2"

Jo Jo

'* sin a{x-t)

X-t
^{t)dt + i

'* sin a{x+t)

x+t
{t'j dt

_ 1- T
Sin as

(a + «) «fe + -^

6 + a; smaz
^ (z - ») rfs.

Now, by (6), the latter integral vanishes when a = 00 and x is

positive ; and by (10), when x lies between a and b, the former

• TT
integral = -^(a;).

Also, when x does not lie between a and J, the former in-

tegral vanishes, and we have

(^) cos ux cos «(^ <^M di = o. (18)
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When X lies between a and b,

^ {t) cos ux ooautdudt = — ^ (»). (ig)
» 2

Hence, if a; he positive, we have

\
<p{t) cos ux cos tj^ c?M(?^ = — ^{x). (20)

Jo Jo 2

Likewise it is easily seen that

^(i) sin t<a; siaM^c?Mc?^ = — 0(a)), (21)
Jo Jo 2

when .K is positive.

We readily see that

^{t) COB ux cos utdudt

^{t) m.n ux Bin utdudt =ir^{x). (22)
jo j-to

Also 2;r0(a;)= I ^ (t) gob u {t - x) du di, (23)

the form in which the theorem was originally given by
Fourier.
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EXA.MFLES.

1. When X has any value between I and — ;, prove that

I tl , . , l.r-»"°" f! , , «ir(i)-a;) ,^W =
-^ J

_^
</>(»)<«''

+ J ^_^^ J
^

"/>(") COS —-^-j ^<?«.

2. For all values of x between o and I, prove that

J \ (j){v)dv + ^ \
<p{v) cos—— dv = 0.

Jo ^^n-l Jo '

3. For all values of x between o and I, prove that

, , 2 --*"°» . mrx (t ... «7rt) ,

4. Prove that, for all values of x between + ir and - tt,

5 « = sin a; — J sin 2a! + ^sin 3a; - ^sin 4« + . . .

5. For all values of x between - and —
,
prove that

4 / . sin 30! sin S* „ \
: = 5 { sin iB — + ^ - &c.

)

t\ 9 »5 /

6. Prove that

^ eoi _ e-o« sin X 2 sm 23! 3 sm 3»

2 6"^— e'"" a'+i a'+4 a'+9

Here (Art. 21),

m cos mir
I (e"' — e'"') sin nxdx = - i^" — «""")

ffi^ + ««*

"

7. Find a function of x which has the value « when x lies between o and a,

and the value zero when x Uea between a and I,

ea 2C I . ira irx I . 2ira 2Trx
Am. d) (») = ^ H— sin — cos — + sin —=- cos ^—

I . Xira Xitx
+ - sin —— cos -7-

3 I I

„ [I nn , , , f «ir» , cl . nira
Here I cos-^— <t){v)di> = c\ cos -7— (fe = — sin—-.

Jo I
^^'

Jo ^ 'w '
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8. Find a function of 'x which is equal to kx when x lies between o and -

and is k{l — x) when x lies between - and I.

kl Ski 1 1 2itx I (nrx I \Qmx \

2 ,

Sin mx = - sin mir I

cos »i» = - sin iMir

1

I ^ (») cos -T— dv = \ kv cos -y- rfi) + L A (if - ») cos— dv.

1

ikl^
This = - ^-^—i, when n is of the form 4m + 2; and is zero for other values

of n.
""

9. If (a;) = -, when x lies between o and o, and ^ (a;) = - when x lies

between a and ir — o, and ^ {x) = , when x varies from ir - o to ir, prove that

,,i/. . I. . I. . \
^ (a;) = - ( am a; Bin o + - Bin 3a; sin 30 H sin 5a! sin 5a + ... 1

.

" \ 9 25 y

10. When X lies between + tt, prove the relations

(sin X 2 sin 2a: 3 sin ^x \

I -»»« ~ 2»-m2
"*"

3» - »»' ~ • • •
j

'

(I OT cos X m cos 2X m cos 3a; \

JOT i-OT» ~ 2''-«j' "^
32 - m^'

-
•••J-

11. Hence prove the relation

I 2U 3U
cot M = - + -5 • + — + . . .

1 2. Find a function which shall be unity for all values of x between + I,

and zero for all other values of x.

F{x) = -\ rf/t 1 ^^(f) oosyttj cosAu;rf|= - dfi cos juj cos /ja;rfi
IT Jo J.CO ^ -'0 J

2 f
" cos /ta; sin u ^

irJo /«

This result can be verified independently.

13. Find a function which shall be equal to cos x for all values of x between
o and IT, and to - cos x for values between — ir and o.

Here we easily find 1 f{x) cos nx dx =0,

and we get

4(2. 4 . 6 . , )
cos « = - {— sm 2a; +— sin 4a; H sin 6a; + . . . >

.

t{i-3 3-S S.7 )
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MrSCELLAlTEOTJS EXAMPLES.

1. Find the value of f^Jfl^.

2. Find the area of the inverse of a hyperbola, the centre being the pole of
inversion ; and show that the area of the inverse of an ellipse, under the same
circumstances, is an arithmetic mean between the areas of tiie circles described
on its axes as diameters.

3. Find the integral of —
^^^Tb^

/''

C Ana. tan-i \—.—7; + -tan-i- \
~ "

.

4. Prove that

f^/W rf» = (J -«)/(!) log(^),
where | lies between X and xo.

_
5. In a spiral of Archimedes, if P, Q and P', Q' be the points of section

with any two branches of the curve made by a line passing through its pole ;

prove that the area bounded by the right line and by the two branches is half
the area of the ellipse whose semiaxes are TI" and F'Q.

6. If a be the sagitta of a circular segment whose base is i, prove that the
area of the segment is, approximately,

2 , 8 «3
= -«} + — --

3 IS *

7. If an ellipse roU upon a right line, show that the differential equation of
the locus of its focus is

(y" + *') ^ = \/(2ai/ + 2^i» + b') {2ay - y^ - i^).

8. A circle rolls from one end to the other of a curved line equal in length
to the circumference of the circle, and then rolls back again on the other side of
the curve

; prove that, if the curvature of the curve be throughout less than
that of the circle, the area contained within the closed curve traced out by the
point of the circle which was first in contact with the fixed curve is six times
the area of the circle, (fiamb. Math. Tripos, 1871.)

9. In the same case show that the entire length of the path described is

eight times the diameter of the circle.

10. Prove that the area of the locus formed by the points of intersection of

normals to an ellipse, which cut at right angles, is 5r(a — i)".

[S6]
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I r. Prove that the area hetween two focal radii of a parabola and the curve
is half the area hetween the curve, the corresponding perpendiculars on the

directrix, and the directrix.

12. Evaluate the following integrals :

—

JVtana ' 3 (I + k;^}{i + X*)

x^ 4- ax 4- yM
13. If 5 = (a" + axf + bx, and u = log —, find the relation

hetween the integrals I -^, f —^ •

isiR J ViS

. f xdx a t dx wAm. -— = _ 1 __ +
J Vjj 3 J VJJ

14. If a curve be such that the area between any portion and a fixed right

line is proportional to the corresponding length of the curve, show that it is a
catenary.

15. Prove that the volume of a rectangular parallelepiped is to that of its

circumsorihed ellipsoid as 2 : ir VJ.

16. Prove that — =
, where sm g = « ain ».

Jo VI - K^ sin'fl Jo Vk^ - siu^fl

17. If any number of triangles be inscribed in one ellipse and circumscribed
to another ellipse, concentric and similar, prove that these triangles have all the
same area.

18. Show that the value of the integral 1 may be exhibited by the

JaVy^— I

following geometrical construction. Let the curve whose equation is

m—r- m
r"'" cos (0=1

m +2

roll on the axis of x ; take the points {xi, yi) (a^, ya) on the roulette described
by the pole, such that yi — a, y% — b; then

-- Xi — x\. (Mr. Jellbtt.)

19. If « he the length of the arc of a spherical curve measured to any point
T, and t be the intercept on the great circle touching at P, between the point of
contact and the foot of the perpendicular from the pole, prove that

s — < = J sin^tSa.

The proof is similai' to that of the corresponding theorem in plana. See Art. 158.
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20. Prove that the volume of a, polyhedron, having for haaes any two
polygons situated in parallel planes, and for lateral faces trapeziums, is ex-
pressed hy the formula

•where S is the distance tetween the parallel planes, S and JB' the areas of the
polygonal bases, and S" the area of the section equidistant from the two bases.

21. If She the length of a loop of the curve »» = «» cos«9, and A the area

of a loop of the curve r^" = a^" cos 2n0, prove that

^ c.
'^"^

Ax 8- —-.
2n

22. Find approximately the area, and also the length, of a loop of the curve

»*S = at cos — . (See Diff. Calc, Art. 268.)

Ans. area = a' x 0.56616 ; length —ax 2.72638.

23. Show from Art. 134 that if a parabola roll on a right line, the locus of

its focus is a catenary.

24. If A be the area of any oval, B that of its pedal with respect to any
internal origin 0, and C that of the locus of the point on the perpendicular
whose distance from is equal to the distance of the point of contact from ;

prove that A, B, are in arithmetical progression.

25. The arc of a curve is connected with the abscissa by the equation «'= Ja;;

find the curve.

26. If the coordinates of a point on a curve given by the equations

a: = c sin 28 (I + cos 29), y = c cos 29 (l - cos 20),

... 4
prove that the length of its arc, measured from its origin, is -c sin 38.

27. Show how to find the sum of every element of the periphery of an ellipse

divided by any odd power {2r+ i) of the semi-diameter conjugate to that which
passes through the element, and give the result in the case of the fifth power.

—

(W. EOBBKTS.)

IT

A fl

(ai)2»^i Jo

„, . . ir(a> + i'') ,

This gives
., ,,
—- when ) = 2.

a'o'

28. A sphere intersects a right cylinder
;
prove that the entire surface of the

cylinder included within the sphere is equal to the product of the diameter of

the cylinder into the perimeter of an ellipse, whose axes are equal to the greatest

and least intercepts made by the sphere on the edges of the cylinder.

[26 a]
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29. Show that the eqxiationa of the involute of a circle are of the form

x — a cos ij> + a^ sin ^, y = a sin
<f>
— ai^ ooa <p,

and prove that the length of the arc of this involute, measured irom ^ = o, is

one half of the arc of a circle which would be described by a radius equal to the
arc of its evolute moving through the angle <)>.

30. Show that the area of the cassinoid

r* - la^r^ cos 20 + a* = J*

is expressed by aid of an elliptic arc when b > a; and by a hyperbolic are
when a>b.

31. A string AB, with its end A fixed, lies in contact with a plane convex
curve ; the string is unwound, and B is made to move about A till the string
is again wound on the curve, the final position of B being B'; prove that for
variations of the position of A the' arc traced out by B will be a maximum or a
minimum, when the tangents at B and B' are equaUy inclined to the tangent at
A ; and will be the former or the latter, according as the curvature at A is

greater or less than half the sum of the curvatures at B and B'.—ICamh. Math.
Tripos, 187 1.)

32. Find the value of —7 e * .
, Am. . /_ e

Jo ^ ViS

33. Find the length, and also the area, of the pedal of a cissoid, the vertex
being origin.

Am. -llog(2 + VJ)- 4a; ^.

34. Prove that the length of an arc of the lemniscate r^ = fl^ cos 20 is repre-
sented by the integral

4f-
V2 J Vi-|sin2^

35. Integrate the equation

cos (cos 9 - sin a sin^)<Z9 + cos^(cosi() - sin a Sia.B)d(p = o.

Ifthe arbitrary constant be determined by the condition that the equation must
be satisfied by the values {o, o) of (9, ip), show that the equation is satisfied by
putting B + ip — a.

36. Each element of the surface of an ellipsoid is divided by the area of the
parallel central section of the surface ; find the sum of all the elementary quotients
extended through the entire ellipsoid. Am. 4.

37. Hence, show that

In
(•&

J^ V;u8 - h' Va« - ffl Va^ - v« Va« - v'
2'
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This depends on the expression for an element of the surface of an ellipsoid in
terms o| elliptic coordinates. See Salmon's Geometry of Three Dimensions,
Art. 411. This proof is due to Chasles [Liomille, tome iii. p. lo.)

38. Hence prove the relation

F{m) E{n) + F{n) E{m) - F{n) F{m) = -,

where
JT IT

Jo VI —m'sa^e Jo

«ud m' + »' = I.

Let V = hsmB, and /i = VA^sia'((> + A^cos'^, in the preceding, and it

becomes

ftJo Jo

2 fa A' sin'
(ft
+ Pcos'<)) - A' sin'

9

i/h^sm^ij, + /6'cos'<?> V/fc'''- A'sin'fl

n"
VA'sin'A + A'oos'd. P

(2
rz

a Jo

oiVA'sin'ift + A'cos*^

VA» sin' (j) + Fcos'<ft VA*- A'sin'e

This furnishes the required result on making h = mlc.

The preceding formula, which is due to Legendre, gives a general relation

between complete elliptic functions of the first and second species, with com-
plementary moduli.

,
39. If three curves be described on the surface of an ellipsoid, along the first

of which the perpendicular to the tangent plan.e makes the constant angle y with
the axis of a, along the second $ with the axis oiy, and along the third a with the

axis of X, and if the angles be connected by the relations = —;— = •

a b e

then, if Ai, A^, A\, he the included portions of the ellipsoid surface, prove that

Aa-Ai Ai-Ai Ai-Ai
;— H 75— H ; = o. (Mr. Jellett.)

a' b' c'

40. Show that the results given in Arts. 161 and 162 hold good for

•spherical conies, where the tangents are arcs of great circles on the sphere.

41. Prove that

I"

dx f" die

l,[ia-x){b-ii:){c-^}i^ J. {(a -»)(*- a;) (c -«)}*'

where a, b, v are in the order of magnitude.
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42. If a be an imaginary cube root of unity, show that, if

_{a-a?)x + a?ii? dy _ {a - a^)dx

'" ~
l-ffl«(<»-«=)a;2' ^° (I - «/')* (I + <'f-f'

~
(I - «*)* (I + »a;2)J'

(Propessoe Catlby.)

43. Prove that the value of

!" cos hx Bin aa; , . ir ir

dx IS o, -, or -,
X ' 4' 2'

according as b is >, =, or < a.

„ „ . r Bin5a:sinaa: , tt ,,.,.,, , , . ,

44. Prove that I ^ ax = - multipued by the leaser of th&

numbers a and i.

45. If e be the eccentricity of an ellipse whose aemiaxis major is unity, and
£ the length of its quadrant, prove that

,

= —-=^ . CW. ROBEKTS.)
(i-e»)VA2-«2) 2\fr^^

46. If S represent the length of a quadrant of the curve r™ = «»' cos mi,
and S\ the quadrant of its first pedal, prove that

2m

Here (Ex. 3, Art. 156), we have

g « V 1-

2m
r

Also, since the first pedal {Dif. Calc.,Ait. 268) is derived by substituting -^
instead of »!, m+t

lm+ i \

\ 2»» /

Lrt. 268) is I

_ (m+ l) gy/j V 2m /

\ 2ml

(m + I) ira' \2ml _ {m + l) vit'
.. SSi = -—r

/ =—

r
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47- In general, if S„ he the quadrant of the ft"' pedal of the curve in the
last, prove that

,

„ „ mn + i

On-l On = Tra".

Here it is readily seen that the »'* pedal is got hy suhstituting in-

stead of m in the equation of the proposed; .-. &c. (W. Eobeets, Ziouville,

184s, p. 177.)

48. If an endless string, longer than the circumference of an ellipse, he passed

round the ellipse and kept stretched, hy a moving pencil, prove that the pencil

will trace out a confocal ellipse.

49. If two confocal ellipses he such that a polygon can he inscrihed in one
and circumscribed to the other, prove that an indefinite number of such polygons
can be described, and that they all have the same perimeter. (Chasles, Comp.
Rend. 1843.)

50. To two arcs of a hyperbola, whose difference is reotifiahle, correspond

equal arcs of the lemniscate which is the pedal of the hyperbola. (Ihid.)

51. Prove' that the tangents drawn at the extremities of two arcs of a conic,

whose difference is reotifiahle, form a quadrilateral whose sides all touch the

same circle. (Ibid.)

52. In the curve

XS + 2/3 = (83,

prove that any tangent divides the portion of the curve between two cusps into

arcs which are to each other as the segments of the portion of the tangent

intercepted by the axes.

53. If two tangents to a cycloid cut at a constant angle, prove that their

sum bears a constant ratio to the arc of the curve between them.

54. li AB, ah, be quadrants of two concentric circles, their radii coinciding;

show that if an arc ^4 of an involute of a circle be drawn to touch the circles

at A, b, the arc ^S is an arithmetical mean between the arcs AS and ab.

55. If ds represent an infinitely small superficial element of area at a point

outside any closed plane curve, and «, f the lengths of the tangents from the

point to the curve, and fl the angle of intersection of these tangents ;
prove that

the sum of the elements represented by -

—

-r, taken for all points exterior to •

the curve, is z-k^. (Prop. Cbofton, Phil. Trans., 1868.)

56. Show that, for all systems of rectangular axes drawn through a given

point in a given plane area.

{ JJ(a;2 _ J.2) dx dyY + 4 { U^V ^» '^!'}^

taken over the whole of the area, is constant ; and that for a triangle, the point

being its centre of gravity, this constant value is

(-iie-A)2 (a* + J* + «* - S^c2 - C«a2 _ aH^

(Ma. J. J. Waikek.)
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57. If ab = a'b', prove that

Jo Jo Xff

= log
^^,j

log (±^{^{^)- ^(o)},

provided the limits ^(o) and 0(00 ) are both definite.

(Mb. Elliott, Frooeeiimgs, Lond. Math. Soo., 1876.) ]

58. If 5' denote the surface, and F'the volume, of the cone standing on the
focal ellipse of an ellipsoid, and having its vertex at an umbilio

;
prove that

S = wa (i» - c^)*, r= Jir« {b', - c%

where a, b, e are the principal semiaxes of the ellipsoid.

S9- Prove that, if ^ be positive and less than unity,

\\xP + x^)los{_i+x)- =-^ 4 (I)
Jo XV Bin «7r »'

and

(»P + x-f) log (I - a) — = - cot BIT- \,
Jo ' = V ' a p p^

(2)

where (i) may be deduced from (2) by putting x^ for x.

(Prop. "Wolstenholmb.)

60. If n, V be the elliptic coordinates of a point in a plane, prove that the
area of any portion of the plane is represented by

w-^

{ji} — v") d/i dv

I V(^2 - c«) (c* - i^)

taken between proper limits.

6 1 . Prove that the differential equation, in elliptic coordinates, of any tan-
gent to the ellipse /i = ^1, is

dft. dv

62. Hence show that the preceding difierential equation in /t and v admits

of an algebraic integral.

63

.

Prove that the differential equation of the involute of the ellipse /i = ^1 is
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'64. Show that, for a homogeneous solid parallelepiped of any form and
dimensions, the three principal axes at the centre of gravity coincide in direc-
tion with those of the solid inscribed ellipsoid which touches at the six centres
•of gravity of its' six faces ; and that, for each of the three coincident axes, and
therefore for every axis passing through their common centre of gravity, the
moment of inertia of the parallelepiped is to that of the eUipsoid in the same
constant ratio, viz., that of lo to ir. (Townsestd.)

65. Show that the volumes of any tetrahedron, and of the inscribed ellipsoid
which touches at the centres of gravity of its four faces, have the same principal
axes at their common centre of gravity ; and that their moments of inertia for

aU planes through that point have the same constant ratio (viz. :8 VT : ir).—
{im.)

66. A quantity .Jf of matter is distributed over the surface of a sphere of
radius a, so that the surface density varies inversely as the cube of the distance
from a given internal point S, distant b from the centre

;
prove that the sum of

the principal moments of inertia of Jf at iS is equal to 2M (a' — b'').

(Comb. Math. Tripos, 1876.)

67. If (I - 2ax + a«r* = 1 + aXi + a'^Xi . . . + a»i„ + . . .
,
prove that

t+i

/.+1 2

X„Xmdx = O, \ Xn^dx = .

-1 J -1 2n+l

68. A closed central curve revolves round an arbitrary external axis in its

plane. Prove that the moments of inertia / and /, with respect to the axis of
revolution and to the perpendicular plane passing through the centre of inertia

of the solid generated by the revolving area, are given respectively by the
expressions

J^m{a^ + SK'), r=»(/.»-g;

where m represents the mass of the solid, a the distance of the centre of the
generating area from the axis of revolution, h and k the radii of gyration of
the area with respect to the parallel and perpendicular axes through its centre,

and I the arm length of its product of inertia with respect to the same axes.

(TowNSEND, Quarterly/ Joternal of Mathematics, 1879.)

{x - «)»-!/ (z) dz, find the value of -—

.

Ans. /(z).
dsi^

70. Prove that the superficial area of an ellipsoid is represented by

,
fi (I -eV2»2)(?a;

2tcc' + 2ir«S ' ^

Ii(i-e^x'^)(l-e'^x^)

where ««-*« = a^e'', b'^ - <? = e"^ h^.

(Mr. Jellett, Sermathena, 1883.)

71. Find the mean distance of two points on opposite sides of a square

whose side ia unity. _j- _
Ans. —— H-log(i + Vz).
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72. A cube being cut at random by a plane, what is the chance that the
section is a hexagon ?

—

(Col . Clakke.)

VJ oot"^ \/3 - V2 cot-' V2
Am. — —- = .04646.

V'

73. Three points are taken at random, one on each of three faces Of a tetra-

hedron : what is the chance that the plane passing through them cuts the fourth

face?— (/4i<?.)

Ans. -.

4

74. Two stars are taken at random from a catalogue : what is the chance
that one or both shall always be visible to an observer in a given latitude, \ ?—
{Ibid.)

. I
. I .

Ans. - versm \ 4 - sin A.
2 4

75. Find the chance that the centre of gravity of a triangle lies inside the
triangle formed by three points taken at random within the triangle.

Am. —
I
2 + — log 4 I

.

27 \ 3 /

76. Two points are taken at random in a triangle, the line joining them
dividing the triangle into two portions : find the mean value of that portion

which contains the centre of gravity.

1 / 82 \
Am. -j ( 470 H log 4 j

= .6967, the triangle being unity.

7 I
The mean value of the greater of the two portions is — + - log 2 = .6987.

77. Show that the mean distance .3f of a point in a rectangle from one angle
is given by

3^= <* + — log -I— + ,. log ——

.

a and b being the sides, d the diagonal.

78. Show that the mean distanceM of two points within a rectangle is

given by

,r »' *^ j/ «" *^\ 5/*', a+d «« 6 + d\
^5^=45 + ^. + n3-j5-^.)+ftl°g— + ylog—)

This result may be deduced from the preceding ; for if jn = mean distance'of a
point within the rectangle whose sides are x, y, from one of its angles,'it is

easy to see that

in
r&

I xyiidxdy; . . &c.
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79. Show that if Jlf he the mean distance of two points within any convex
area fl, we have

iK-=^||2S'<^<?»,

where 2, 2' are the segments into which the area is divided by a straight line
crossing it

; the coordinates of the line being p, a ; and the integration extend-
ing to all positions of the Uue.

This may be seen by considering that if a random line crosses the area, the

chance of its passing between the two points is -^, where i is the length ofthe

boundary. Again, for any position of the Kue, the chance of the points lying
22' 2

on opposite sides of it is —-
; therefore the whole chance is --i!f(22'l,where

if(22') is the mean value of the product 22' for all positions of the line.

80. In the same case we also have

^=6^11'^^'^^'^"'

being the length of the intercepted chord. Hence we have the remarkable-
identity

(CKOi'Toif, Proceedings, Lond. Math. Soc, vol. 8.)

81. Show that if p be the distance of two points taken at random in any
area,

This may be applied to the circle. (See Ex. 24.)

82. Show that the mean area of the triangle determined by three points,

chosen at random within any convex area is

M=a-\
I

[C^t^dpda,

where 2 = either segment cut off by the chord C ; but throughout the integra-

tions, as the direction of the chord alters, 2 means always the segment on the

same side of the chord as at first.

83. A ship at A observes another at B, whose course is unknown. Sup-

posing their speed the same, prove that the chance of their coming within a
2 d

given distance d of each other is always - sin-' -, whatever the course taken
ir a g

by A; provided, its inclination to AB is not greater than cos-'-, where

AB = a. [Camh. Math. Tripos, 1871. Prop. Miller.)
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84. A random straight line crosses a circle; find the chance that two
points taken at random in the circle shall lie on opposite sides of the line.

128

"

Ans. ; . This is deduced at once from the value of M, the mean dia-
451-^ 2M
tance of the two points ; as the chance = . If tivo random lines

are drawn, the chance that both lines shall pass hetween the points

. I

85. A point is taken at random in a triangle. What is the probahility

that if three other points are taken at random, one shall lie in each of the tri-

angles A0£, BOG, COA ?

Am. — . This may easily be found to depend on the integral ^^ 0/87 . idai0,

where o, 0, y are the three triangles above.

86. A line crosses a circle at random ; find the- chance that a point taken

^t random in the circle shall be distant from the line by less than the radius of

the circle. , 2
Am. 1 .

87. Two points are taken on the circumference of a semicircle. Find the

'Chance that their ordinates fall on either side of a point taken at random on the

.diameter. . 4
Am. -T-.

88. In any convex area toMch has a centre 0, let an indefinite straight line

revolve round 0, and the locus of the centre of gravity of either half into which
it divides the area be traced. Show that the mean distance of from all points

in the area is equal to - the perimeter of this locus. Also, - of the area enclosed

by this locus = mean area of the triangle OXT; where X, Fare points taken at

random in the given area. (Cropton, Froceedings, Lend. Math. Soc, vol. viii.)

89. The probability that the distance of two points taken at random in a

given convex area Q shall exceed a given limit (a) is

i>= r^Jf (CS - 3a'0+ 2a')dpda,
30"

where C is a chord of the area, whose coordinates are p, a ; the integration

extending to all values of p, a, which give a chord G> a.
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AiLMAN, on properties of paraboloid,

268, 281.

AmBler's plauimeter, 214.

Annular solids, 261.

Approximate methods of finding

areas, 211.

Arcliimedes, on solids, 254.

spiral of, 194.

area of, 194.

rectification of, 227.

Areas of plane curves, 176.

Ball, on Amsler'a planimeter, 215.

Bernoulli's series, by integration by
parts, 128.

Binet, on principal axes, 312.

BufEon's problem, 365.

Cardioid, area of, 192.

rectification of, 227, 238.

Cartesian oval, rectification of, 239.

Catenary, equation to, 183.

rectification of, 223.

surface of revolution by, 260.
Cauohy, on exceptional oases ia defi-

nite integrals, 128.

on principal and general values of

a definite integral, 132.

on singular definite integrals, 134.

on hyperbolic paraboloid, 271.

Chasles, on rectification of ellipse, 234,
248.

on Legendre's formula, 405.
Cone, right,. 256.

Crofton, oa mean value and probabi-

lity, 346-391, 407, 410.

Cycloid, 189.

Definite integrals, 30, 115.

exceptional cases, 128.

infinite limits, 131, 135.

Definite integrals, principal and gene-
ral values, 132.

singular, 134.

differentiatioa of, 143, 147.

deduced by differentiation, 144.

integration under the sign
J,

148.
double, 149, 313.

Descartes, rectification of oval of, 239.
DifEerentiation under the sign of inte-

gration, 107.

Dirichlet's theorem, 316.

Elliott, extension of Holditch's theo-
rem, 209.

on FruUani's theorem, 157.
Ellipse, arc of, 226.

Ellipsoid, 266.

quadrature of, 282.

of gyration, 309, 312.

momental, 309.

central, 310.

Elliptic integrals, 29, 173, 226, 232,,

235, 243, 279.
coordinates, 249.

Epitroohoid, rectification of, 237.
Equimomental cone, 310.
Errors of observation, 376.

Euler, 102.

theorem on parabolic sector, 198.

Eulerian integrals, 117, 124, 159.

definition of

—

r(«) and.B(m, «), 124, 160.

B(m, ») =
r(m) r(«)

r (m + m)

r(«)r(i-«)= ^^
161.

162.

value of r(i)r(^)...r(^

164.

table of log (r«), 169.
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Fagnani's theorem, 229.

Folium of Descartes, 192, 218.

Fom-ier's theorem, 392.

Frequency, curve of, 368.

FruUani, theorem of, 155, 408.

Gamma functions, 124, 159.

Gauss, on integration, over a closed

surface, 287.

<Jenocchi, rectification of Cartesian

oval, 240, 242.

•Graves, on rectification ofellipse, 234.

'Green's theorem, 327.

Groin, 269.

Gudermann, 183.

Guldin's theorems, 262, 263, 288.

Gyration, radius of, 293.

Helix j rectification of, 244.

Hirst, on pedals, 202.

Holditch, theorem of, 206.

Hyperbola, rectification of, 233.

Landen's theorems on, 232.

Hyperbolic sines and cosines, 182.

Hypotrochoid : see epitrochoid.

Inertia, integrals of, 291.

moments of, 291.

products of, 291, 306.

principal sixes of, 307.

momental eUipsoid of, 309.

Integrals, definitions of, 1, 114.

elementary, 2.

double, 149, 313.

of inertia, 291.

transformation of multiple, 320.

Integration, different methods of, 20.

by parts, 20.

of , 58.
it"- I

by successive reduction, 63.

by differentiation, 71, 144.

of binomial differentials, 75.

by rationalization, 92, -97.

bv differentiation under sign
J,

"109.

by infinite series, 110.

regarded as summation, 31, 114.

double, 269, 313.

change of order in, 314.

over a closed surface, 284.

Jacobiaus, 323, 326.

Jellett, on quadrature of ellipsoid, 283,
409.

Kempe, theorem on moving area, 210.

Lagrange's series, remainder in, 158.

Lambert, theorem on elliptic area, 196.

Landen,theoremonhyperbolioaro, 232.

on difference between asymptote
and arc of hyperbola, 233.

Laplace's theorem on spherical har-
monics, 338.

Legendre, on Eulerian integrals, 160.

formula on rectification, 228.

relation between complete elliptic

functions, 405.

Leibnitz, on Gxildin'a theorems, 264.

Lemniscate, area of, 191.

rectification of, 404.

Leudesdorf, 157, 210, 220.

Lima9on, area of, 192.

rectification of, 237.

Limits of integration, 33, 115.

Mean Value and probability, 346.

Mean Value, definition of, 346.

for one independent variable, 347.

twoormoreindependent variables,

350.

Method of quadratures, 178.

Miller, 358.

Momental ellipse, 300.

of a triangle, 304.

Moments of inertia, 291.

relative to parallel axes, 292.

uniform rod, 294.

parallelepiped, cylinder, 295.

cone, 296.

sphere, 297.

ellipsoid, 298.

prism, 302.

tetrahedron, 304.

solid ring, 305.

M'CuHagh, on rectification of ellipse

and hyperbola, 236.

Neil, on semi-cubical parabola, 224,

249.

Newton, method of finding areas, 177.

by approximation, 213.

on tractrix, ^19.

Observation, errors of, 374.
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Panton, on rectification of Cartesian
oval, 240.

Paraboloid, of revolution, 256.
(illiptio,_265, 268.

Partial tractions, 42.

Pedal, area of, 199.

of ellipse, 190.

Steiner's theorem on area of, 201.

Eaabe, on, 202.

Hirst, on, 202.

Roberts, on,

Planimeter, Amsler's, 214.

Popoff, on remainder in Lagrange's

series, 159.

Probability, used to find mean values,

356.

Probabilities, 349.

Products of inertia, 301, 306.

Quadrature, plane, 176.

on the sphere, 276.

of surfaces, 279.

paraboloid, 280.

ellipsoid, 282.

Eaabe, theorem on pedal areas, 202.

Badius of gyration, 293.

Eandom straight lines, 381.

Eectifloation of, plane curves, 222.

parabola, 223.

catenary, 233.

semi-cubical parabola, 224.

of evolutes, 224.

arc of ellipse, 226.

hyperbola, 231.

epitrochoid, 237.

roulettes, 238.

Cartesian oval, 239, 247.

twisted curves, 243.

Eecurring biquadratic under radical

sign, 101.

Eeduotion, integration by, 63.

by diiferentiation, 71, 80.

Eoberts, W., on Cartesian oval, 240.

on pedals, 407.

Eoulette, quadrature of, 205.

rectification of, 238.

Simpson's rules for areas, 213.

Sphere, surface and volume of, 262.

quadrature on, 276.

Spherical harmonics, 332.

Spheroid, surface of, 257, 258.

Spiral, hyperboUo, 191.

of Archimedes, 194, 227, 380.

logarithmic, 227.

Steiner, theorem on pedal areas, 201.

on areas of roulettes, 203.

on rectification of roulettes, 238.

Surface of, solids, 250.

cone, 251.

sphere, 252.

rev9lution, 254.

spheroid, prolate, 257.

oblate, 258.

annular solid, 261.

Taylor's theorem, obtained by inte-

gration by parts, 126.

remainder as a definite integral,

127.

Townsend on moments of inertia of a

ring, 305.

on moments of inertia in

general, 310.

Tractrix, area of, 219.

length of, 225.

Van Huraet, on rectification, 249.

Viviani, Florentine enigma, 278.

Volumes of solids, 250, 264, 286.

Wallis, value for tt, 122.

Weddle, on areas by approximation,

213.

Woolhouse, on Holditch's theorem,

206.

Zolotareff, on remainder in Lagrange's
series, 158.

THE END.
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